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Part |
Probability Distributions



Basic Anatomy |

How the tail approaches to zero
defines the behavior of extremes

For example it could approach as
e P(X>x)~x"Y
e P(X > x)~exp(—xY)

e Classifying tails in general is a
difficult task. There are too
many classes.
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Basic Anatomy I

PDF

PDF

PDF

0.125

0.100

0.075

0.050

0.025

Location 4

0.125 |

0.100 |-

0.075 |

0.050

0.025

[=]
0]

10 15 20

values

0.125

0.100 |-

0.075

0.050 |-

0.025

o
w

10 15 20

values

o
wn

10 15 20

values

PDF

PDF

PDF

0.125

0.100

0.075

0.050

0.025

0.25

0.20

0.10

0.05

Scale 5

values

0.08

0.06

0.04

0.02 |

o
w

10 15 20

values

(=]
wv

10 15 20

values

0.100

0.075

PDF

0.050

0.025

0.06 -

& 004

0.02

Shapey

5 10 15 20

values

(=]

10 15 20

values

o

10 15 20

values



Normal distribution

2
Type Normal distribution equations
Range —o0 < x <00
1 (x — p)*
paf  Iw ()= e (‘ 207
=
[
F (o) = gerte( =)
vix) = —er C
cdf V20
Quantile Qx (W) = u —V2oerfc 1 (2u) Variable
Mean Un = U * The most famous distribution in general.
SD Oy =0 * It has two parameter: the location y and
scale o.
Skew Sy =0 e |tis symmetric and thus not ideal for
Kurtosis CKy =3 hydroclimatic variables.

* No tail control



B Log-Normal distribution

Type Lognormal distribution equations
Range x =0
1 (Inx — p)?
pdf frn(x) = J2mox exp\ — 202
1 u—Inx
cdf Fra(x) = Eerfc< T >
Quantile Q,n(u) = exp (,u —20 erfc_l(Zu))
o2

Mean Kex = €Xp <,u + 7)
SD oy =+ (expo? — Dexp(2u + 02)
Skew CS.yn = vexpoa? — 1(expa? + 2)

CKlAf
Kurtosis = 3exp(20?) + 2 exp(30?) + exp(40?)
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Variable

e A popular distribution in hydrology.

* Emerges as a transformation from the
normal, i.e., Y = exp X

* It has two parameter: the scale u and
shape o.

* One shape controlling both tails.



Gamma distribution

Type Gamma distribution equations
Range x =0
BV X

pdf fo(x) = mx Y exp "B

X

0
Quantile Q) = F5 't (w)
Mean ug = By
SD o = BY
Skew CSq =2/\ly
Kurtosis CKg =3+6/y
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Variable

It has two parameters: the scale f and
shape y

Commonly used to model precipitation.
The shape control mainly the left tail as
the exponential part dominates quickly



B So, what’s the problem?

e We can add a location parameter to any distribution, e.g.,
three-parameter Gamma, Lognormal, Pareto, etc.

e This will increase flexibility but then the lower bound will not
be zero and it could be even negative.

 One shape parameter either will control both tails or mainly
one of them.

e Could we capture the behavior of extremes in hydroclimatic
variables with limited flexibility as well as the behavior of the
left tail, and the shape of main body?



B Some more cool distributions

Most RV’s in nature are defined in the positive axis

For consistency at least we should choose distribution
function defined in (0, o)

Flexible distribution should have a scale parameters [ and
shape parameters y; and y,, e.g.,

B v, (x)h—l (x))’z
JogiBvuva) = e 5\s) P\~

1

o Y1\ v1iv2
Fprxu(x;B,v1,72) =1 =1+, (E)

_i —Y17Y2
1 14
FB/]"IH(x; ﬁ) )/1’ yZ) - (1 + Y_(%) 2)
1

More details in Papalexiou and Koutsoyiannis, 2013 and Papalexiou, 2018



https://www.sciencedirect.com/science/article/abs/pii/S0309170811002193?via%3Dihub
https://doi.org/10.1016/j.advwatres.2018.02.013

Shape examples
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Probability density
functions of the
Generalized Gamma
distribution for various
shape parameter
values. The values of
scale parameter 8 were
chosen so that mean
value of each
distribution equals 1.

Probability density
functions of the Burr type
XlI distribution for various
shape parameter values.
The values of scale
parameter 8 were chosen
so that mean value of
each distribution equals
1.
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L—-skewness

Global analysis on daily precipitation
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Observed L-points for the month of January of the 14 157 daily rainfall records
studied in comparison to the theoretical L-areas of (a) the BrXll distribution and (b)
the GG distribution. Red-colored L-points lie outside the L-area; dark-colored
indicate a Bell-shaped distribution; light-colored indicate a J-shaped distribution.

A global survey on the seasonal variation of the marginal distribution of daily precipitation.
https://doi.org/10.1016/j.advwatres.2016.05.005



https://doi.org/10.1016/j.advwatres.2016.05.005

Focusing on tails
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802
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Record length (years)

Locations of the stations studied (a total of 15 137

daily rainfall records with time series length Papalexiou et al. (2013). How extreme is
greater than 50 years). Note that there are overlaps extreme? An assessment of daily rainfall
with points corresponding to high record lengths distribution tails. Hydrol. Earth Syst. Sct,

_ ) . : 17(2), 851-862.
shadowing (being plotted in front of) points of https://doi.org/10.5194 /hess-17-851-2013

lower record lengths.



https://doi.org/10.5194/hess-17-851-2013

Comparing popular tails
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The best-fitted tail is ranked as 1 Return period (years)
while the worst-fitted as 4. A lower
average rank indicates a better

performance.

Four different distribution tails fitted to an
empirical tail (P, LN, W and G stands for the
Pareto, the Lognormal, the Weibull and the
Gamma distribution). A wrong choice may lead
to severely underestimated or overestimated
rainfall for large return periods.



Heavy tails prevalil

—180°-140°-100°-60° —20° 20° 60° 100° 140° 180°

0 20 40 60 80 100
Best fitted subexponential distributions (%)

Geographical variation of the percentage of best fitted subexponential tails in cells
defined by latitude difference Ap = 2.5° and longitude difference A4 =5°. In total, in
72.6% of the 15 029 records analysed, the subexponential tails were the best fitted.



Battle of Extreme Value Distributions

If a random variable (RV) X follows the distribution F,(x) then the distribution function of the
maximum of n independent and identically distributed RV’s, i.e., Y, = max(X,,...,X,) will be,

Gy, (x) = (Fx(x))" (1)

Now, if n = oo there are three limiting laws, the type | or Gumbel (G), the type Il or Fréchet (F) and
the type Il or reversed Weibull (RW) with distribution functions respectively given by

Gg(x) = exp (— exp (— x;Ta)) x € R (2)

Gr(x) = exp (— <%)—y> X=>a (3)
Y

Grw(x) = exp (— (— %) ) x<a (4)

These distributions comprise a location parameter o € R and a scale parameter 8 > 0, with the
Fréchet and the reversed Weibull distributions having the additional shape parameter y > 0.

These three distributions can be unified into a single expression known as the Generalized Extreme
Value (GEV) distribution (also known as the Fisher-Tippet) with distribution function given by

_a\" VY _

Gery(X) = exp (— (1+y%) ) 1+y=20 (5)
This simple reparameterization exploits the limiting definition of the exponential function so that
the Gumbel distribution can also emerges for y — 0.



L-moments fitting

GEV shape parameter y
-0.5 -03-0.1 00010203 04 05 06 07 038

0.7] » Observedpoints|1 | | | i
m Averagepoint ! I 1 | | |
0.6 o Gumbel [ | I |
. T R o | |
05— GEV T ! !
| Loy ] | |
2L 04t ! N I | |
2 ' | [ | [ | |
‘g 03k | | | | |
;If: ' | I I | |
| I I I | |
= 02F | | | | | |
| I I I | |
0.1r | | I I I | |
0.0 te | | [ I I | |
P I ¢ I I | | | I I
| ‘ I T S | | | |
—01 C |1 N | 1 | 3 | i | 3 | ' | 'l 1 i
04 05 06 07 08

-02 -0.1 00 01 02 03

L—skewness

The figure depicts the empirical distribution of the GEV
shape parameter as well as a fitted normal distribution
with mean 0.093 and standard deviation 0.12.

[t is worth noting the large variation of the estimated GEV
shape parameter as it ranges from —0.59 to 0.76 with
mean value 0.093; the 90% empirical confidence interval is
much smaller; i.e., from —0.11 to 0.28.

More in “Battle of Extreme Value Distributions”

L-kurtosis vs. L-skewness plot the 15 137 observed
points. Interestedly, only 20% of points lies on the left
of the Gumbel distribution, corresponding thus to a
GEV distribution with y< 0 (reversed Weibull law),
while 80% of points lies on the right corresponding to
a GEV distribution with y> 0 (Fréchet law). The
average point lies almost exactly on the GEV line and
corresponds to y = 0.09. The figure may not reveal the
percentage of points that could be described by a
Gumbel distribution, yet, it offers a clear indication that
the Fréchet law prevails.
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https://doi.org/10.1029/2012WR012557

It’s the record length that makes the difference

Larger samples offer more accurate
estimates; in this direction we study
the estimated GEV shape parameter
in relationship with the record
length, as the records studied here
vary in length from 40 to 163 years.

We grouped the 15 137 estimated
shape parameter values into nine
groups based on the length of the
record that were estimated; and
second, we estimated various
statistics for each group.

Average GEV shape parameter y

Clearly, the figure indicates an upward
“trend” over record length both in the
mean shape parameter value and in the
percentage of records having positive
shape parameter.
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The figure depicts the mean value of the GEV
shape parameter for various ranges of record
length. While the number in the boxes indicates
the percentage of records with positive shape
parameter value.



Bounded GEV is probably an artefact

(a) Mean, ¢ and @,: observed points vs. record
length, and the estimated asymptotic values of the
fitted curves.

(b) Standard deviation vs. record length,

(c) Percentage of record with negative shape
parameter vs. record length.
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Recent
Evidence

(a) Spatial distribution of the
absolute values of the empirical
MEF slopes for the 21,348
records of daily precipitation,

(b) spatial distribution of the
corresponding exceedance
probability of the observed
MEF slopes (%); grid boxes
show mean values.

Nerantzaki, S., Papalexiou, S.M., Tails of
Extremes: Advancing a Graphical Method and
Harnessing Big Data to Assess Precipitation
Extremes, Advances in Water Resources
(2019),
https://doi.org/10.1016/j.advwatres.2019.1
03448

-180°-140°-100° -60° -20* 20° 60° 100° 140" 180°

40°

IDnl I

e

-a0* "

’ —
e _pos DO 005 010 015 021 026 pan gop
Observed MEF slopes .

" 60" 100" 140" 18D*

40°

20"\

L
5 1
Exceedance probability of observed MEF slopes (%)


https://doi.org/10.1016/j.advwatres.2019.103448

Hourly records

Spatial variation of Pareto II (PII) and
Weibull (W) tail indices.

Pareto |l tail shape parameter
I 0.10-0.14 [ 0.22-0.26
[ 0.14-0.18 N 0.26-0.30
[10.18-0.22 WM 0.30-0.33

Papalexiou, S. M., AghaKouchak, A., &

Foufoula-Georgiou, E. (2018). A Diagnostic
Framework for Understanding Climatology of Weibull tail shape parameter
Tails of Hourly Precipitation Extremes in the B 0.38-0.45 [ 0.55-0.60
United States. Water Resources Research. I 0.45-0.50 M 0.60-0.65
https://doi.org/10.1029/2018WR022732 [£10.50-0.55 WM 0.65-0.74 ——

Keameters



https://doi.org/10.1029/2018WR022732

Missing the tail
is bad news

(A) Fitted Gamma (G), Burr
type XII (BrXII) and
Generalized Gamma (GG)
distributions for an hourly
precipitation record of Lake
Charles regional Airport in
Louisiana. Tail indices of BrXII
and GG distributions were fixed
from the maps of Fig. 6. (B)
Prediction difference of the GG
and the BrXII distributions
compared to a G distribution for
a typical hourly precipitation
record in USA.

Papalexiou, S. M., AghaKouchak, A., &
Foufoula-Georgiou, E. (2018). A Diagnostic

Hourly precipitation (mm)

Prediction difference (%)

Framework for Understanding Climatology ¢

Tails of Hourly Precipitation Extremes in the
United States. Water Resources Research.
https://doi.org/10.1029/2018WR022732
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https://doi.org/10.1029/2018WR022732

Maximum likelihood

A generic estimation method is the maximum likelihood (ML). The likelihood
function is defined by:

1 n
L(0) = - fx(x;; 0)

n i=1
But in practice we use the log-likelihood function

1 n

l0g£(6) =~ > logfx(xi; 0
1=

as sums are simpler to handle and the two expressions are equivalent in terms
of the parameter values that maximize them. The maximum likelihood

estimates (MLE) are given by @ = argmax logL(0)

0.06
LS 0.04

0.02

values



Least square fitting

We can estimate the parameters of any distribution by using generic optimization
methods like minimizing the Square Error of an objective function (OF). We can
construct several OF for fitting distributions:

n
0 = argminz (x; — Qx(u;; 0))2
i=1

11 0 — aremin S Xi 1 2
— gmlniiz1 (m_ >
[11 6 = argmin zn 1(FX(xl-; 0) — FN(xi))Z
i=
v 0 = argmin zn (M — 1)2
i=1 \ Fn(xp)

Where u; = Fy(x;) =7r(x;)/(n+ 1)



Moments and L-moments

e Generally, If a distribution has n parameters, we need to form a

system of n equations and solve for the unknown parameters.

e This is accomplished by equating the theoretical moments (or L-

moments) with the corresponding sample ones. i.e., i, = fi, for q =
1,2,..n

e For example, if a distribution has two parameters then we can create
a system of equations by using the expressions of the theoretical
mean and standard deviation and the corresponding ones, i.e., {u =
fi,0 =6}



Caution!

Distributions with two shape parameters offer great flexibility
But it is not always trivial to fit

It easy to get tail behavior that are unrealistic, e.g., infinite

variance

Regional methods and different fitting methods should be
explored

It has become very common to use software packages to fit

tenths of distributions to select the best...




Part I1
Stochastic Modelling



Reality as observed...

Precipitation (mm)
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. “virtual reality” of stochastic modelling... if done
right it’ll reproduce the behavior or extremes
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Daily temperature | changing autocorrelation
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The distribution law remains the same yet the time series profoundly changes as
the ACS becomes more intense.



Relative humidity | changing shape
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See how changes in the shape of distribution affect the time series!



Daily discharge | changing tail
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Natural phenomena with heavy distribution tails can kill!



Daily precipitation | changing shape
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From a RV to a random process

e A random process is just a sequence of random variables

commonly denoted as {X(t)|t € T} where T is an indexed
set.

e We can assume that the time series we observe or record

in nature are the outcome or the realization of a random
process.

e Stochastic process # Time series



So what is a random process?
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Things not to Forget...

 Nature likes to connect things

 The random variables {X;, X,, X3, ... } that make the
random process are typically connected with each
other.

e Waldo Tobler’s First Law of Geography, stating that
“near things are more related than distant things”

e But we can also say that: near in time “things” are
more related than distance in time “things”
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Temporal Correlation matters for extremes
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Spatial Correlation matters for extremes




Make a stochastic process simple

In most cases we could approximate well a process by two major component

e |ts marginal distribution (for stationary processes)

e the autocorrelation structure quantified commonly by the correlation
coefficient (a measure of linear dependence).
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e The lag-t autocorrelation of a stochastic process is defined as
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px (1) =
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From one distribution to another

 From a value z using the CDF we can find the
corresponding probability u

 And from u using the quantile function of another
distribution we can find the corresponding value x

u=0.281r

CDF ®(z)

z=0.88 4

Quantile Q(p)

0 x=4.80

16



Bl Transforming time series
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Correlation transformation |

Basic idea: Find the ACS of the parent-Gaussian process
From Z to X we use: X(t) = g(Z(t)) = Qy (CIDZ(Z(t)))

From X to Z we use: Z(t) = g‘l(X(t)) = Q, (FX(X(t)))

We can estimate the bivariate fyx() (x(t), x(r)) by transforming the the bivariate
Normal Distribution @z)z(r) (z(¢), z(); pz(t)) which relates two Gaussian RV’s that are
correlated by p,(7)

frox@ (x@®), x(@)) = @z(z(0) (g_l(x(t)), g (x(@®); Pz(T)) J(x(6), x(7))
J((x (D), (x(1)) = 0971 (x(t))/0x(t)0 g~ (x(7))/0x(T)

e(8x, pz () = E(X(DX (D)) = j f X2 fecorgm (60, 2(2; (D) dx(©)dx (D)

C(ex» Pz (T)) - .U)Z(
0%

PX(T) = R(ex» PZ(T)) =



Correlation transformation Il

Basic idea: Find the ACS of the parent-Gaussian process
From Z to X we use the Transformation: X(t) = Qy (CDZ(Z(t)))

The bivariate Normal Distribution @z¢)z(r) (z(t), z(7); pz (r)) relates two Gaussian RV’s
that are correlated by p, (7). Using the mean value theorem of the Transformation of a RV

we can create a link between p, (7) and pz(7).

€(60x.p2(0) = EX@X() = (0x (22(2(0))) 0x(®22()

j j 0x(®22(®)) 0x(®2(2(D) P20y 20 (2(8), 2(1); 2 (D)) dz(D)dz(D)

— 00 —O0O0

C(0Oy, 2
pyx(T) = R(HX»Pz(T)) = ( X pzo_(;)) Hx
X




Intermittency

Several natural processes like precipitation at fine temporal scales (e.g., at

daily or subdaily scales), discharge of small streams, or even wind, are
intermittent processes.

This means that their marginal distribution is of mixed-type.
Fx(x) = (1 —po)Fxix>0(x) +po x=0

) Po x =0
fx() = {(1 —Po)fxix>0(x) x>0
0 0<u<pg

Xy = Qx(u) =

Uu—Ppo

Qx|x>0 <—1 — p0> po<u=sl

uy = (1 - Po).UX|X>0

of = (1— pO)O-)?|X>O +po(1 — Po).u)z(|x>o

(1)
(2)

(3)

(4)
(5)



ACS transformation

So how can we find corresponding Gaussian ASC?

1.0 } 1.0 @ Target correlation
@ Gaussian correlation
0.8 |
N 0.8y
Q
c 0.67¢ c
1 e
0 B 0.6}
S 041 o
© S
O <! .
0.2 5 0.4
0.0 t , : . . . 02}
0.0 0.2 0.4 0.6 0.8 1.0
0.0 ¢,

Autocorrelation py

Target 0.56 0.37 0.25 0.18 0.12 0.09 0.07 0.05 0.04 0.03
Gaussian 0.79 0.64 0.51 041 031 0.24 0.2 0.15 0.12 0.09

Instead of values we could use functions!



Unified framework | Graphical summary
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B Hour
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Daily precipitation (mm /day) | October Daily river discharge (m3/s) | April Daily wind speed (m /sec) | January
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Relative humidity | November No of extremes per year Low/high rainfall years as 0/1 sequence
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A multivariate case
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Unified theory for stochastic modelling of hydroclimatic processes: )
Preserving marginal distributions, correlation structures, and s

intermittency

Simon Michael Papalexiou

Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA

ARTICLE INFO ABSTRACT

Article history: Hydroclimatic processes come in all “shapes and sizes". They are characterized by different spatiotem-
Received 25 October 2017 poral correlation structures and probability distributions that can be continuous, mixed-type, discrete
ﬁzfei ;‘:IEF:E':':E zgéﬁs or even binary. Simulating such processes by reproducing precisely their marginal distribution and lin-
P . v ear correlation structure, including features like intermittency, can greatly improve hydrological analysis

Available online 15 February 2018 . . . . R
and design. Traditionally, modelling schemes are case specific and typically attempt to preserve few sta-

Keywords: tistical moments providing inadequate and potentially risky distribution approximations. Here, a single
Stochastic modelling framewaork is proposed that unifies, extends, and improves a general-purpose modelling strategy, based
Weather generator on the assumption that any process can emerge by transforming a specific “parent” Gaussian process.

Parent-Gaussian framework A novel mathematical representation of this scheme. introducing parametric correlation transformation

https://doi.org/10.1016/j.advwatres.2018.02.013
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Key Points:

» Versatile and easy modeling and
simulation of spatiotemporal
random fields

» Generated fields reproduce any
continuous, discrete, and
mixed-type marginal distribution,
any correlation structure, and
intermittency

« New spatiotemporal correlation
structures based on copulas and
survival functions
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Random Fields Simplified: Preserving Marginal
Distributions, Correlations, and Intermittency,
With Applications From Rainfall to Humidity
Simon Michael Papalexiou"** and Francesco Serinaldi*’

"Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan,
Canada, >Global Institute for Water Security, Saskatoon, Saskatchewan, Canada, 3Facu1ty of Environmental Sciences,
Czech University of Life Sciences Prague, “School of Engineering, Newcastle University, Newcastle, Upon Tyne, UK,
SWillis Research Network, London, UK

Abstract Nature manifests itself in space and time. The spatiotemporal complexity of processes such as
precipitation, temperature, and wind, does not allow purely deterministic modeling. Spatiotemporal
random fields have a long history in modeling such processes, and yet a single unified framework
offering the flexibility to simulate processes that may differ profoundly does not exist. Here we introduce
a blueprint to efficiently simulate spatiotemporal random fields that preserve any marginal distribution,
any valid spatiotemporal correlation structure, and intermittency. We suggest a set of parsimonious

yet flexible marginal distributions and provide a rule of thumb for their selection. We propose a new and
unified approach to construct flexible spatiotemporal correlation structures by combining copulas and
survival functions. The versatility of our framework is demonstrated by simulating conceptual cases of
intermittent precipitation, double-bounded relative humidity, and temperature maxima fields. As a
real-word case we simulate daily precipitation fields. In all cases, we reproduce the desired properties. In
an era characterized by advances in remote sensing and increasing availability of spatiotemporal data, we
deem that this unified approach offers a valuable and easy-to-apply tool for modeling complex
spatiotemporal processes.

https://doi.org/10.1029/2019WR026331
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A quick comment on changes
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Papalexiou, S. M., & Montanari, A. (2019). Global and Regional Increase of Precipitation Extremes under Global
Warming. Water Resources Research. https://doi.org/2018WR024067
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Changes per decade
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B Non-s tatlonary simulation
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(c) 40% linear increase in the mean value of nonzero precipitation
(e) assuming 40% linear increase in the mean value and 30% in the standard deviation

From Papalexiou et al. (2018). Precise Temporal Disaggregation Preserving Marginals and Correlations (DiPMaC) for
Stationary and Nonstationary Processes. Water Resources Research. https://doi.org/10.1029/2018WR022726
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CoSMoS-R... Makes it Easy!

CoSMoS

...just use our R-package!

CoSMoS: Complete
Stochastic Modeling
Solution

Just search for CoSMoS in
CRAN and install it like any
other R-package.
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CoSMoS-R... Makes it Easy!

...just use our R-package!

CoSMoS: Complete
Stochastic Modeling
Solution

Just search for CoSMoS in
CRAN and install it like any
other R-package.




I n Sta I I COS I\/I OS_ R . Files Plots Packages Help Viewer

CoSMoS initially conceived back in 2009. nstall from: _ o
It’s a long story.. more details here. == + romeepeseres

Install Packages

Repository (CRAN) v

gparate multiple with space or comma):

To install
1. Open RStudio Install to Library:
2. Type CoSMoS D:/Documents/R/win-library/4.0 [Default] v

3. Click Install

v Install dependencies

Install Cancel

Alternatively, just copy-paste the following text in Rstudio:

if (!require('devtools')) {install.packages('devtools'); library(devtools)}
install github('TycheLab/CoSMoS', upgrade = 'never', build vignettes = TRUE)

library(CoSMoS)

?” CoSMoS-package”

To check documentation with many examples copy-paste and run this:
RShowDoc ("vignette", type = c("html"), "CoSMoS")

Or just click the link:
https://cran.r-project.org/web/packages/CoSMoS/vignettes/vignette.html



https://cran.r-project.org/web/packages/CoSMoS/vignettes/vignette.html
https://cran.r-project.org/web/packages/CoSMoS/vignettes/vignette.html#section_4
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There’s a CoSMoS-MATLAB

CoSMoS MATLAB available at:

MathWorks
GitHub
https://github.com/SMPLab

Super simple GUI!

Select the probability distribution and
autocorrelation structure from the drop-
down lists.

Enter the parameters of selected distribution
and autocorrelation structure.

Enter the intermittency value (as probability
zero), sample size (time series length), and
number of time series you wish to generate.

Click the “Generate time series” button and
that’s it!


https://github.com/SMPLab

So, targets for next year...

1. Have fun - reaLLg ’meortawt!

2. Explore various distribution focusing on their tail
behavior

3. Try many fitting methods and learn when to use the
right one

4. Learn how to generate time series and random
fields to mimic reality

5. Explore spatiotemporal dynamics of extremes
6. Do a large-scale research study and write a paper
..andl most importantly HAVE FUN!



Keep Calm
And
Generate Time Series
Preserving Extremes!

& Thank you!
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