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Part I
Probability Distributions



Basic Anatomy I3

Right tail

Left tail

Main body

How the tail approaches to zero 
defines the behavior of extremes

For example it could approach as
• 𝑃𝑃 𝑋𝑋 > 𝑥𝑥 ~𝑥𝑥−1/𝛾𝛾

• 𝑃𝑃 𝑋𝑋 > 𝑥𝑥 ~exp(−𝑥𝑥𝛾𝛾)

• Classifying tails in general is a 
difficult task. There are too 
many classes.



Basic Anatomy II4

Location a Scale β Shape γ



Normal distribution5

Type Normal distribution equations
Range −∞ < 𝑥𝑥 < ∞

pdf 𝑓𝑓𝒩𝒩 𝑥𝑥 =
1

2𝜋𝜋𝜎𝜎
exp −

(𝑥𝑥 − 𝜇𝜇)2

2𝜎𝜎2

cdf 𝐹𝐹𝒩𝒩 𝑥𝑥 =
1
2

erfc
𝜇𝜇 − 𝑥𝑥

2𝜎𝜎

Quantile 𝑄𝑄𝒩𝒩 𝑢𝑢 = 𝜇𝜇 − 2𝜎𝜎erfc−1(2𝑢𝑢)
Mean 𝜇𝜇𝒩𝒩 = 𝜇𝜇
SD 𝜎𝜎𝒩𝒩 = 𝜎𝜎
Skew CS𝒩𝒩 = 0
Kurtosis CK𝒩𝒩 = 3

• The most famous distribution in general. 
• It has two parameter: the location 𝜇𝜇 and 

scale 𝜎𝜎.
• It is symmetric and thus not ideal for 

hydroclimatic variables.
• No tail control



Log-Normal distribution6

• A popular distribution in hydrology.
• Emerges as a transformation from the 

normal, i.e., 𝑌𝑌 = exp 𝑋𝑋
• It has two parameter: the scale 𝜇𝜇 and 

shape 𝜎𝜎.
• One shape controlling both tails.

Type Lognormal distribution equations
Range 𝑥𝑥 ≥ 0

pdf 𝑓𝑓ℒ𝒩𝒩 𝑥𝑥 =
1

2π𝜎𝜎𝜎𝜎
exp −

ln 𝑥𝑥 − 𝜇𝜇 2

2𝜎𝜎2

cdf 𝐹𝐹ℒ𝒩𝒩 𝑥𝑥 =
1
2

erfc
𝜇𝜇 − ln 𝑥𝑥

2𝜎𝜎

Quantile 𝑄𝑄ℒ𝒩𝒩 𝑢𝑢 = exp 𝜇𝜇 − 2𝜎𝜎 erfc−1 2𝑢𝑢

Mean 𝜇𝜇ℒ𝒩𝒩 = exp 𝜇𝜇 +
𝜎𝜎2

2
SD 𝜎𝜎ℒ𝒩𝒩 = exp 𝜎𝜎2 − 1 exp(2𝜇𝜇 + 𝜎𝜎2)

Skew CSℒ𝒩𝒩 = exp 𝜎𝜎2 − 1 exp 𝜎𝜎2 + 2

Kurtosis
CKℒ𝒩𝒩

= 3 exp 2𝜎𝜎2 + 2 exp 3𝜎𝜎2 + exp 4𝜎𝜎2

− 3



Gamma distribution7

• It has two parameters: the scale 𝛽𝛽 and 
shape 𝛾𝛾

• Commonly used to model precipitation.
• The shape control mainly the left tail as 

the exponential part dominates quickly

Type Gamma distribution equations
Range 𝑥𝑥 ≥ 0

pdf 𝑓𝑓𝒢𝒢 𝑥𝑥 =
𝛽𝛽−𝛾𝛾

Γ(𝛾𝛾)
𝑥𝑥−1+𝛾𝛾 exp −

𝑥𝑥
𝛽𝛽

cdf 𝐹𝐹𝒢𝒢 𝑥𝑥 = �
0

𝑥𝑥
𝑓𝑓𝒢𝒢 𝑡𝑡 d𝑡𝑡

Quantile 𝑄𝑄𝒢𝒢 𝑢𝑢 = 𝐹𝐹𝒢𝒢
−1 𝑢𝑢

Mean 𝜇𝜇𝒢𝒢 = 𝛽𝛽𝛽𝛽

SD 𝜎𝜎𝒢𝒢 = 𝛽𝛽 𝛾𝛾

Skew CS𝒢𝒢 = 2/ 𝛾𝛾

Kurtosis CK𝒢𝒢 = 3 + 6/𝛾𝛾



So, what’s the problem?8

• We can add a location parameter to any distribution, e.g., 
three-parameter Gamma, Lognormal, Pareto, etc.

• This will increase flexibility but then the lower bound will not 
be zero and it could be even negative.

• One shape parameter either will control both tails or mainly 
one of them.

• Could we capture the behavior of extremes in hydroclimatic 
variables with limited flexibility as well as the behavior of the 
left tail, and the shape of main body?



Some more cool distributions9

• Most RV’s in nature are defined in the positive axis

• For consistency at least we should choose distribution 
function defined in (0, ∞)

• Flexible distribution should have a scale parameters 𝛽𝛽 and 
shape parameters  𝛾𝛾1 and 𝛾𝛾2, e.g., 

• 𝑓𝑓𝒢𝒢𝒢𝒢 𝑥𝑥; 𝛽𝛽, 𝛾𝛾1, 𝛾𝛾2 = 𝛾𝛾2
𝛽𝛽 Γ 𝛾𝛾1/𝛾𝛾2

𝑥𝑥
𝛽𝛽

𝛾𝛾1−1
exp − 𝑥𝑥

𝛽𝛽

𝛾𝛾2

• 𝐹𝐹ℬ𝓇𝓇XII(𝑥𝑥; 𝛽𝛽, 𝛾𝛾1, 𝛾𝛾2) = 1 − 1 + 𝛾𝛾2
𝑥𝑥
𝛽𝛽

𝛾𝛾1
− 1

𝛾𝛾1𝛾𝛾2

• 𝐹𝐹ℬ𝓇𝓇III(𝑥𝑥; 𝛽𝛽, 𝛾𝛾1, 𝛾𝛾2) = 1 + 1
𝛾𝛾1

𝑥𝑥
𝛽𝛽

− 1
𝛾𝛾2

−𝛾𝛾1𝛾𝛾2

More details in Papalexiou and Koutsoyiannis, 2013 and Papalexiou, 2018

https://www.sciencedirect.com/science/article/abs/pii/S0309170811002193?via%3Dihub
https://doi.org/10.1016/j.advwatres.2018.02.013


Shape examples10

Probability density 
functions of the 
Generalized Gamma 
distribution for various 
shape parameter 
values. The values of 
scale parameter β were 
chosen so that mean 
value of each 
distribution equals 1.

Probability density 
functions of the Burr type 
XII distribution for various 
shape parameter values. 
The values of scale 
parameter β were chosen 
so that mean value of 
each distribution equals 
1.



Global analysis on daily precipitation11

Observed L-points for the month of January of the 14 157 daily rainfall records 
studied in comparison to the theoretical L-areas of (a) the BrXII distribution and (b) 
the GG distribution. Red-colored L-points lie outside the L-area; dark-colored
indicate a Bell-shaped distribution; light-colored indicate a J-shaped distribution.

A global survey on the seasonal variation of the marginal distribution of daily precipitation. 
https://doi.org/10.1016/j.advwatres.2016.05.005

https://doi.org/10.1016/j.advwatres.2016.05.005


Focusing on tails12

Papalexiou et al. (2013). How extreme is 
extreme? An assessment of daily rainfall 
distribution tails. Hydrol. Earth Syst. Sci., 
17(2), 851–862. 
https://doi.org/10.5194/hess-17-851-2013

Locations of the stations studied (a total of 15 137 
daily rainfall records with time series length 
greater than 50 years). Note that there are overlaps 
with points corresponding to high record lengths 
shadowing (being plotted in front of) points of 
lower record lengths.

https://doi.org/10.5194/hess-17-851-2013


Comparing popular tails13

Four different distribution tails fitted to an 
empirical tail (P, LN, W and G stands for the 
Pareto, the Lognormal, the Weibull and the 
Gamma distribution). A wrong choice may lead 
to severely underestimated or overestimated 
rainfall for large return periods.

Mean ranks of the tails for all records.
The best-fitted tail is ranked as 1
while the worst-fitted as 4. A lower
average rank indicates a better
performance.



Heavy tails prevail14

Geographical variation of the percentage of best fitted subexponential tails in cells 
defined by latitude difference Δφ = 2.5° and longitude difference Δλ = 5°. In total, in 
72.6% of the 15 029 records analysed, the subexponential tails were the best fitted.



Battle of Extreme Value Distributions15

If a random variable (RV) X follows the distribution FX(x) then the distribution function of the 
maximum of n independent and identically distributed RV’s, i.e.,  Yn = max(X1,…,Xn) will be,

𝐺𝐺𝑌𝑌𝑛𝑛 𝑥𝑥 = 𝐹𝐹𝑋𝑋 𝑥𝑥 𝑛𝑛
(1)

Now, if 𝑛𝑛 → ∞ there are three limiting laws, the type I or Gumbel (G), the type II or Fréchet (F) and 
the type III or reversed Weibull (RW) with distribution functions respectively given by

𝐺𝐺G 𝑥𝑥 = exp − exp − 𝑥𝑥−𝛼𝛼
𝛽𝛽

𝑥𝑥 ∈ ℝ (2)

𝐺𝐺F 𝑥𝑥 = exp − 𝑥𝑥−𝛼𝛼
𝛽𝛽

−𝛾𝛾
𝑥𝑥 ≥ 𝛼𝛼 (3)

𝐺𝐺RW 𝑥𝑥 = exp − − 𝑥𝑥−𝛼𝛼
𝛽𝛽

𝛾𝛾
𝑥𝑥 ≤ 𝛼𝛼 (4)

These distributions comprise a location parameter α ∈ ℝ and a scale parameter β > 0, with the 
Fréchet and the reversed Weibull distributions having the additional shape parameter γ > 0.
These three distributions can be unified into a single expression known as the Generalized Extreme 
Value (GEV) distribution (also known as the Fisher-Tippet) with distribution function given by

𝐺𝐺GEV 𝑥𝑥 = exp − 1 + 𝛾𝛾 𝑥𝑥−𝛼𝛼
𝛽𝛽

−1/𝛾𝛾
1 + 𝛾𝛾 𝑥𝑥−𝛼𝛼

𝛽𝛽
≥ 0 (5)

This simple reparameterization exploits the limiting definition of the exponential function so that 
the Gumbel distribution can also emerges for 𝛾𝛾 → 0.



L-moments fitting16

L-kurtosis vs. L-skewness plot the 15 137 observed 
points. Interestedly, only 20% of points lies on the left 
of the Gumbel distribution, corresponding thus to a 
GEV distribution with γ < 0 (reversed Weibull law), 
while 80% of points lies on the right corresponding to 
a GEV distribution with γ > 0 (Fréchet law). The 
average point lies almost exactly on the GEV line and 
corresponds to γ ≈ 0.09. The figure may not reveal the 
percentage of points that could be described by a 
Gumbel distribution, yet, it offers a clear indication that 
the Fréchet law prevails.

The figure depicts the empirical distribution of the GEV 
shape parameter as well as a fitted normal distribution 
with mean 0.093 and standard deviation 0.12.
It is worth noting the large variation of the estimated GEV 
shape parameter as it ranges from −0.59 to 0.76 with 
mean value 0.093; the 90% empirical confidence interval is 
much smaller, i.e., from −0.11 to 0.28 . 

More in “Battle of Extreme Value Distributions”

https://doi.org/10.1029/2012WR012557


It’s the record length that makes the difference17

Larger samples offer more accurate 
estimates; in this direction we study 
the estimated GEV shape parameter 
in relationship with the record 
length, as the records studied here 
vary in length from 40 to 163 years. 
We grouped the 15 137 estimated 
shape parameter values into nine 
groups based on the length of the 
record that were estimated; and 
second, we estimated various 
statistics for each group.

The figure depicts the mean value of the GEV 
shape parameter for various ranges of record 
length.  While the number in the boxes indicates 
the percentage of records with positive shape 
parameter value.

Clearly, the figure indicates an upward 
“trend” over record length both in the 
mean shape parameter value and in the 
percentage of records having positive 
shape parameter.



Bounded GEV is probably an artefact18

(a) Mean, Q5 and Q95 observed points vs. record 
length, and the estimated asymptotic values of the 
fitted curves.

(b) Standard deviation  vs. record length,

(c) Percentage of record with negative shape 
parameter vs. record length.



Recent 
Evidence

19

(a) Spatial distribution of the 
absolute values of the empirical 
MEF slopes for the 21,348 
records of daily precipitation, 

(b) spatial distribution of the 
corresponding exceedance 
probability of the observed 
MEF slopes (%); grid boxes 
show mean values. 

Nerantzaki, S., Papalexiou, S.M., Tails of 
Extremes: Advancing a Graphical Method and 
Harnessing Big Data to Assess Precipitation 
Extremes, Advances in Water Resources 
(2019),
https://doi.org/10.1016/j.advwatres.2019.1
03448

https://doi.org/10.1016/j.advwatres.2019.103448


Hourly records 20

Spatial variation of Pareto II (PII) and 
Weibull (W) tail indices.

Papalexiou, S. M., AghaKouchak, A., & 
Foufoula‐Georgiou, E. (2018). A Diagnostic 
Framework for Understanding Climatology of 
Tails of Hourly Precipitation Extremes in the 
United States. Water Resources Research. 
https://doi.org/10.1029/2018WR022732

https://doi.org/10.1029/2018WR022732


Missing the tail
is bad news

21

(A) Fitted Gamma (G), Burr 
type XII (BrXII) and 
Generalized Gamma (GG) 
distributions for an hourly 
precipitation record of Lake 
Charles regional Airport in 
Louisiana. Tail indices of BrXII
and GG distributions were fixed 
from the maps of Fig. 6. (B) 
Prediction difference of the GG 
and the BrXII distributions 
compared to a G distribution for 
a typical hourly precipitation 
record in USA.

Papalexiou, S. M., AghaKouchak, A., & 
Foufoula‐Georgiou, E. (2018). A Diagnostic 
Framework for Understanding Climatology of 
Tails of Hourly Precipitation Extremes in the 
United States. Water Resources Research. 
https://doi.org/10.1029/2018WR022732

https://doi.org/10.1029/2018WR022732


Maximum likelihood22

A generic estimation method is the maximum likelihood (ML). The likelihood 
function is defined by:

ℒ 𝜽𝜽 =
1
𝑛𝑛

�
𝑖𝑖=1

𝑛𝑛
𝑓𝑓𝑋𝑋(𝑥𝑥𝑖𝑖; 𝜽𝜽)

But in practice we use the log-likelihood function

logℒ 𝜽𝜽 =
1
𝑛𝑛

�
𝑖𝑖=1

𝑛𝑛
log𝑓𝑓𝑋𝑋(𝑥𝑥𝑖𝑖; 𝜽𝜽)

as sums are simpler to handle and the two expressions are equivalent in terms 
of the parameter values that maximize them. The maximum likelihood 
estimates (MLE) are given by 𝜽𝜽 = argmax logℒ 𝜽𝜽



Least square fitting23

We can estimate the parameters of any distribution by using generic optimization 
methods like minimizing the Square Error of an objective function (OF). We can 
construct several OF for fitting distributions:

Where 𝑢𝑢𝑖𝑖 = 𝐹𝐹𝑁𝑁(𝑥𝑥𝑖𝑖) = 𝑟𝑟(𝑥𝑥𝑖𝑖)/(𝑛𝑛 + 1)

I 𝜽𝜽 = argmin �
𝑖𝑖=1

𝑛𝑛
𝑥𝑥𝑖𝑖 − 𝑄𝑄𝑋𝑋 𝑢𝑢𝑖𝑖; 𝜽𝜽 2

II
𝜽𝜽 = argmin �

𝑖𝑖=1

𝑛𝑛 𝑥𝑥𝑖𝑖

𝑄𝑄𝑋𝑋 𝑢𝑢𝑖𝑖; 𝜽𝜽
− 1

2

III 𝜽𝜽 = argmin �
𝑖𝑖=1

𝑛𝑛
𝐹𝐹𝑋𝑋 𝑥𝑥𝑖𝑖; 𝜽𝜽 − 𝐹𝐹𝑁𝑁 𝑥𝑥𝑖𝑖

2

IV
𝜽𝜽 = argmin �

𝑖𝑖=1

𝑛𝑛 𝐹𝐹𝑋𝑋 𝑥𝑥𝑖𝑖; 𝜽𝜽
𝐹𝐹𝑁𝑁 𝑥𝑥𝑖𝑖

− 1
2



Moments and L-moments24

• Generally, If a distribution has n parameters, we need to form a 
system of n equations and solve for the unknown parameters.

• This is accomplished by equating the theoretical moments (or L-
moments) with the corresponding sample ones. i.e., 𝜇𝜇𝑞𝑞 = �𝜇𝜇𝑞𝑞 for 𝑞𝑞 =
1,2, … 𝑛𝑛

• For example, if a distribution has two parameters then we can create 
a system of equations by using the expressions of the theoretical 
mean and standard deviation and the corresponding ones, i.e., {𝜇𝜇 =
�𝜇𝜇, 𝜎𝜎 = �𝜎𝜎}



Caution!25

• Distributions with two shape parameters offer great flexibility

• But it is not always trivial to fit

• It easy to get tail behavior that are unrealistic, e.g., infinite 
variance

• Regional methods and different fitting methods should be 
explored

• It has become very common to use software packages to fit 
tenths of distributions to select the best…



Part II
Stochastic Modelling



Reality as observed…27

… “virtual reality” of stochastic modelling… if done 
right it’ll reproduce the behavior or extremes



Daily temperature | changing autocorrelation28

The distribution law remains the same yet the time series profoundly changes as 
the ACS becomes more intense.



Relative humidity | changing shape29

See how changes in the shape of distribution affect the time series!



Daily discharge | changing tail30

Natural phenomena with heavy distribution tails can kill!



Daily precipitation | changing shape31



From a RV to a random process32

• A random process is just a sequence of random variables 
commonly denoted as {𝑋𝑋(𝑡𝑡)|𝑡𝑡 ∈ 𝑇𝑇} where 𝑇𝑇 is an indexed 
set.

• We can assume that the time series we observe or record 
in nature are the outcome or the realization of a random 
process. 

• Stochastic process ≠ Time series



So what is a random process?33



Things not to Forget…34

• Nature likes to connect things

• The random variables {𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3, … } that make the 
random process are typically connected with each 
other.

• Waldo Tobler’s First Law of Geography, stating that 
“near things are more related than distant things”

• But we can also say that: near in time “things” are 
more related than distance in time “things”



Not correlated35



Temporal Correlation matters for extremes36



Spatial Correlation matters for extremes37



Make a stochastic process simple38

In most cases we could approximate well a process by two major component
• Its marginal distribution (for stationary processes)
• the autocorrelation structure quantified commonly by the correlation 

coefficient (a measure of linear dependence).

• The lag-𝜏𝜏 autocorrelation of a stochastic process is defined as

𝜌𝜌𝛸𝛸 𝜏𝜏 =
𝐸𝐸 𝑋𝑋 𝑡𝑡 − 𝜇𝜇𝑋𝑋 𝑡𝑡 𝑋𝑋 𝑡𝑡 − 𝜏𝜏 − 𝜇𝜇𝑋𝑋 𝑡𝑡−𝜏𝜏

𝜎𝜎𝑋𝑋 𝑡𝑡 𝜎𝜎𝑋𝑋 𝑡𝑡−𝜏𝜏
=

𝐸𝐸 𝑋𝑋 𝑡𝑡 𝑋𝑋 𝑡𝑡 − 𝜏𝜏 − 𝜇𝜇𝑋𝑋
2

𝜎𝜎𝑋𝑋
2

𝐸𝐸 𝑋𝑋 𝑡𝑡 𝑋𝑋 𝑡𝑡 − 𝜏𝜏 = �
−∞

∞

�
−∞

∞

𝑥𝑥 𝑡𝑡 𝑥𝑥 𝑡𝑡 − 𝜏𝜏 𝑓𝑓𝑋𝑋 𝑡𝑡 𝑋𝑋 𝑡𝑡−𝜏𝜏 𝑥𝑥 𝑡𝑡 , 𝑥𝑥 𝑡𝑡 − 𝜏𝜏 d𝑥𝑥 𝑡𝑡 d𝑥𝑥 𝑡𝑡 − 𝜏𝜏



From one distribution to another39

• From a value z using the CDF we can find the 
corresponding probability u

• And from u using the quantile function of another 
distribution we can find the corresponding value x

CDF Φ(𝑧𝑧)
Quantile Q(𝑝𝑝)



Transforming time series40

Gaussian 
values

Probability 
values

Φ(z)

QX(u)

X values



Correlation transformation I41

Basic idea: Find the ACS of the parent-Gaussian process

From 𝑍𝑍 to 𝑋𝑋 we use: 𝑋𝑋 𝑡𝑡 = 𝑔𝑔 𝑍𝑍 𝑡𝑡 = 𝑄𝑄𝑋𝑋 Φ𝑍𝑍 𝑍𝑍 𝑡𝑡

From 𝑋𝑋 to 𝑍𝑍 we use: 𝑍𝑍 𝑡𝑡 = 𝑔𝑔−1 𝑋𝑋 𝑡𝑡 = 𝑄𝑄𝑍𝑍 𝐹𝐹𝑋𝑋 𝑋𝑋 𝑡𝑡

We can estimate the bivariate 𝑓𝑓𝑋𝑋 𝑡𝑡 𝑋𝑋 𝜏𝜏 𝑥𝑥 𝑡𝑡 , 𝑥𝑥 𝜏𝜏 by transforming the the bivariate 
Normal Distribution φ𝑍𝑍 𝑡𝑡 𝑍𝑍 𝜏𝜏 𝑧𝑧 𝑡𝑡 , 𝑧𝑧 𝜏𝜏 ; 𝜌𝜌𝑍𝑍 𝜏𝜏 which relates two Gaussian RV’s that are 
correlated by 𝜌𝜌𝑍𝑍 𝜏𝜏

𝑓𝑓𝑋𝑋 𝑡𝑡 𝑋𝑋 𝜏𝜏 𝑥𝑥 𝑡𝑡 , 𝑥𝑥 𝜏𝜏 = φ𝑍𝑍 𝑡𝑡 𝑍𝑍 𝜏𝜏 𝑔𝑔−1 𝑥𝑥 𝑡𝑡 , 𝑔𝑔−1 𝑥𝑥 𝜏𝜏 ; 𝜌𝜌𝑍𝑍 𝜏𝜏 𝐉𝐉 𝑥𝑥 𝑡𝑡 , 𝑥𝑥 𝜏𝜏

𝐉𝐉 𝑥𝑥(𝑡𝑡 , 𝑥𝑥(𝜏𝜏 = 𝜕𝜕𝑔𝑔−1 𝑥𝑥(𝑡𝑡) /𝜕𝜕𝜕𝜕 𝑡𝑡 𝜕𝜕𝑔𝑔−1 𝑥𝑥(𝜏𝜏) /𝜕𝜕𝜕𝜕 𝜏𝜏

𝒞𝒞 𝜽𝜽𝑋𝑋, 𝜌𝜌𝑍𝑍 𝜏𝜏 = 𝐸𝐸 𝑋𝑋 𝑡𝑡 𝑋𝑋 𝜏𝜏 = �
−∞

∞

�
−∞

∞

𝑥𝑥 𝑡𝑡 𝑥𝑥 𝜏𝜏 𝑓𝑓𝑋𝑋 𝑡𝑡 𝑋𝑋 𝜏𝜏 𝑥𝑥 𝑡𝑡 , 𝑥𝑥 𝜏𝜏 ; 𝜌𝜌𝑍𝑍 𝜏𝜏 d𝑥𝑥 𝑡𝑡 d𝑥𝑥 𝜏𝜏

𝜌𝜌𝑋𝑋 𝜏𝜏 = ℛ 𝜽𝜽𝑋𝑋, 𝜌𝜌𝑍𝑍 𝜏𝜏 ≔
𝒞𝒞 𝜽𝜽𝑋𝑋, 𝜌𝜌𝑍𝑍 𝜏𝜏 − 𝜇𝜇𝑋𝑋

2

𝜎𝜎𝑋𝑋
2



Correlation transformation II42

Basic idea: Find the ACS of the parent-Gaussian process

From 𝑍𝑍 to 𝑋𝑋 we use the Transformation: 𝑋𝑋 𝑡𝑡 = 𝑄𝑄𝑋𝑋 Φ𝑍𝑍 𝑍𝑍 𝑡𝑡

The bivariate Normal Distribution φ𝑍𝑍 𝑡𝑡 𝑍𝑍 𝜏𝜏 𝑧𝑧 𝑡𝑡 , 𝑧𝑧 𝜏𝜏 ; 𝜌𝜌𝑍𝑍 𝜏𝜏 relates two Gaussian RV’s 
that are correlated by 𝜌𝜌𝑍𝑍 𝜏𝜏 . Using the mean value theorem of the Transformation of a RV 
we can create a link between 𝜌𝜌𝑋𝑋 𝜏𝜏 and 𝜌𝜌𝑍𝑍 𝜏𝜏 .

𝒞𝒞 𝜽𝜽𝑋𝑋, 𝜌𝜌𝑍𝑍 𝜏𝜏 ≔ 𝐸𝐸 𝑋𝑋 𝑡𝑡 𝑋𝑋 𝜏𝜏 = 𝐸𝐸 𝑄𝑄𝑋𝑋 Φ𝑍𝑍 𝑍𝑍 𝑡𝑡 𝑄𝑄𝑋𝑋 Φ𝑍𝑍 𝑍𝑍(𝜏𝜏

= �
−∞

∞

�
−∞

∞

𝑄𝑄𝑋𝑋 Φ𝑍𝑍 𝑧𝑧(𝑡𝑡 𝑄𝑄𝑋𝑋 Φ𝑍𝑍 𝑧𝑧(𝜏𝜏 φ𝑍𝑍 𝑡𝑡 𝑍𝑍 𝜏𝜏 𝑧𝑧 𝑡𝑡 , 𝑧𝑧 𝜏𝜏 ; 𝜌𝜌𝑍𝑍 𝜏𝜏 d𝑧𝑧 𝑡𝑡 d𝑧𝑧 𝜏𝜏

𝜌𝜌𝑋𝑋 𝜏𝜏 = ℛ 𝜽𝜽𝑋𝑋, 𝜌𝜌𝑍𝑍 𝜏𝜏 ≔
𝒞𝒞 𝜽𝜽𝑋𝑋, 𝜌𝜌𝑍𝑍 𝜏𝜏 − 𝜇𝜇𝑋𝑋

2

𝜎𝜎𝑋𝑋
2



Intermittency43

• Several natural processes like precipitation at fine temporal scales (e.g., at 
daily or subdaily scales), discharge of small streams, or even wind, are 
intermittent processes.

• This means that their marginal distribution is of mixed-type.
𝐹𝐹𝑋𝑋 𝑥𝑥 = 1 − 𝑝𝑝0 𝐹𝐹𝑋𝑋|𝑋𝑋>0 𝑥𝑥 + 𝑝𝑝0 𝑥𝑥 ≥ 0 (1)

𝑓𝑓𝑋𝑋 𝑥𝑥 = �
𝑝𝑝0 𝑥𝑥 = 0
1 − 𝑝𝑝0 𝑓𝑓𝑋𝑋|𝑋𝑋>0 𝑥𝑥 𝑥𝑥 > 0

(2)

𝑥𝑥𝑢𝑢 = 𝑄𝑄𝑋𝑋 𝑢𝑢 = �
0 0 ≤ 𝑢𝑢 ≤ 𝑝𝑝0

𝑄𝑄𝑋𝑋|𝑋𝑋>0
𝑢𝑢 − 𝑝𝑝0

1 − 𝑝𝑝0
𝑝𝑝0 < 𝑢𝑢 ≤ 1

(3)

𝜇𝜇𝑋𝑋 = 1 − 𝑝𝑝0 𝜇𝜇𝑋𝑋|𝑋𝑋>0 (4)

𝜎𝜎𝑋𝑋
2 = 1 − 𝑝𝑝0 𝜎𝜎𝑋𝑋|𝑋𝑋>0

2 + 𝑝𝑝0(1 − 𝑝𝑝0)𝜇𝜇𝑋𝑋|𝑋𝑋>0
2 (5)



ACS transformation44

So how can we find corresponding Gaussian ASC?

Target 0.56 0.37 0.25 0.18 0.12 0.09 0.07 0.05 0.04 0.03
Gaussian 0.79 0.64 0.51 0.41 0.31 0.24 0.2 0.15 0.12 0.09

Instead of values we could use functions!



Unified framework | Graphical summary45



Hourly rainfall simulation46



Real World
Examples I

47

Daily precipitation
Mixed-type marginal
𝑝𝑝0: 78%
PDF: 𝒢𝒢𝒢𝒢(16.5, 0.39,0.97)
ACS: 𝜌𝜌W(𝜏𝜏; 0.43,0.48)

Daily river discharge
Continuous marginal
𝑝𝑝0: 0%
PDF:ℬ𝓇𝓇III(40.5,12.6,0.37)
ACS: 𝜌𝜌W(𝜏𝜏; 3.5,0.79)

Daily wind speed
Continuous marginal
𝑝𝑝0: 0%
PDF: 𝒢𝒢𝒢𝒢(4.4,2.66,1.76)
ACS: 𝜌𝜌PII(𝜏𝜏; 1.7,0.68)



Real World
Examples II

48

Relative humidity
Bounded in [0,1] marginal
𝑝𝑝0: 0%
PDF: ℬ(16.1,2.3)
ACS: 𝜌𝜌PII(𝜏𝜏; 0.80,1,16)

Extremes per year
Discrete marginal
𝑝𝑝0: 0%
PMF:𝒫𝒫𝒫𝒫(0.85,0.15)
ACS: 𝜌𝜌PII(𝜏𝜏; 1,1)

Low/high rainfall years
Binary
PMF: 𝑝𝑝0 = 0.25, 𝑝𝑝1 = 0.75
ACS: 𝜌𝜌W(𝜏𝜏; 2,0.5)



A multivariate case49

Simulation of daily 
precipitation, wind 
speed and relative 
humidity.

The lag-0 and lag-1 
correlation matrices are: 

𝑲𝑲𝑋𝑋 0 =
1 0.50 0.35

0.50 1 0.60
0.35 0.60 1

𝑲𝑲𝑋𝑋 1 =
0.30 0.25 0.15
0.10 0.40 0.35
0.12 0.30 0.50



Details in…50

https://doi.org/10.1016/j.advwatres.2018.02.013

https://doi.org/10.1016/j.advwatres.2018.02.013


Random Fields51



Details in…52

https://doi.org/10.1029/2019WR026331

https://doi.org/10.1029/2019WR026331


A quick comment on changes53

Papalexiou, S. M., & Montanari, A. (2019). Global and Regional Increase of Precipitation Extremes under Global 
Warming. Water Resources Research. https://doi.org/2018WR024067

https://doi.org/2018WR024067


Changes per decade54



Quiz: find the Future55



Non-stationary simulation56

(c) 40% linear increase in the mean value of nonzero precipitation
(e) assuming 40% linear increase in the mean value and 30% in the standard deviation

From Papalexiou et al. (2018). Precise Temporal Disaggregation Preserving Marginals and Correlations (DiPMaC) for 
Stationary and Nonstationary Processes. Water Resources Research. https://doi.org/10.1029/2018WR022726

https://doi.org/10.1029/2018WR022726


CoSMoS-R… Makes it Easy!57

…just use our R-package!
CoSMoS: Complete 
Stochastic Modeling 
Solution

Just search for CoSMoS in
CRAN and install it like any 
other R-package.



CoSMoS-R… Makes it Easy!58

…just use our R-package!
CoSMoS: Complete 
Stochastic Modeling 
Solution

Just search for CoSMoS in
CRAN and install it like any 
other R-package.



Install CoSMoS-R…59

if (!require('devtools')) {install.packages('devtools'); library(devtools)}

install_github('TycheLab/CoSMoS', upgrade = 'never', build_vignettes = TRUE)

library(CoSMoS)

?`CoSMoS-package`

Alternatively, just copy-paste the following text in Rstudio:

To install 
1. Open RStudio 
2. Type CoSMoS 
3. Click Install

RShowDoc("vignette", type = c("html"), "CoSMoS")

To check documentation with many examples copy-paste and run this: 

Or just click the link:
https://cran.r-project.org/web/packages/CoSMoS/vignettes/vignette.html

CoSMoS initially conceived back in 2009. 
It’s a long story… more details here.

https://cran.r-project.org/web/packages/CoSMoS/vignettes/vignette.html
https://cran.r-project.org/web/packages/CoSMoS/vignettes/vignette.html#section_4


There’s a CoSMoS-MATLAB60

CoSMoS MATLAB available at:

• MathWorks

• GitHub 

https://github.com/SMPLab

• Super simple GUI!
• Select the probability distribution and 

autocorrelation structure from the drop-
down lists.

• Enter the parameters of selected distribution 
and autocorrelation structure.

• Enter the intermittency value (as probability 
zero), sample size (time series length), and 
number of time series you wish to generate.

• Click the “Generate time series” button and 
that’s it!

https://github.com/SMPLab


So, targets for next year…61

1. Have fun - really important!

2. Explore various distribution focusing on their tail 
behavior 

3. Try many fitting methods and learn when to use the 
right one

4. Learn how to generate time series and random 
fields to mimic reality

5. Explore spatiotemporal dynamics of extremes
6. Do a large-scale research study and write a paper
…and most importantly HAVE FUN!



Keep Calm
And

Generate Time Series
Preserving Extremes!

Thank you!
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