Changes in extremes
Detection and consequences

Ilaria Prospocimi - Ca’ Foscari University of Venice
ilaria.prospocimi@unive.it

13 July 2020
Change (?)

Increasing interest in assessing changes in extremes related to natural hazards.

Many studies investigate changes in extreme rainfall and extreme flows.

Changes in magnitude/frequencies: infrastructures are designed to withstand extreme events of some magnitude.

Problematic if these become more (or less!) frequent.
What causes change

from Prosdocimi et al. (2015), WRR, doi:10.1002/2015WR017065
What causes change

from Lopez Frances (2013), HESS, doi:10.5194/hess-17-3189-2013
What causes change

Implicit assumption:

Temperature anomalies

Why study change?

- Understand if process of interest (river flow, rainfall, etc) is evolving in time
- Understand how process of interest is affected by external drivers
- Assess risk connected to a certain hazard and its evolution
- If this is changing, how to account for this

Detection,
Why study change?

- Understand if process of interest (river flow, rainfall, etc) is evolving in time
- Understand how process of interest is affected by external drivers
- Assess risk connected to a certain hazard and its evolution
- If this is changing, how to account for this

Detection, attribution
Why study change?

- Understand if process of interest (river flow, rainfall, etc) is evolving in time
- Understand how process of interest is affected by external drivers
- Assess risk connected to a certain hazard and its evolution
- If this is changing, how to account for this

Detection, attribution and management.
The Lostock at Littlewood Bridge

Water Year

Flow (m³/s)

Water Year

Flow (m³/s)
The Lostock at Littlewood Bridge

Mean annual rainfall vs Flow (m³/s) for The Lostock at Littlewood Bridge

Mean annual rainfall vs Flow (m³/s) for Urbext

8/37
Statistical tools

We assume that $\mathbf{y} = (y_1, \ldots, y_n)$ is a random sample from a population.

We are interested in discovering some property of the population.
Statistical tools

We assume that \(y = (y_1, \ldots, y_n) \) is a random sample from a population.

We are interested in discovering some property of the population.

Inference framework:

- Parametric: assume that \(y_i \) is a realisation of some distribution described by parameters \(\theta \) (\(f(y_i; \theta) \))
- Non-parametric: no assumption on the distribution of \(f(y) \) is made (well, less assumptions...)
Parameteric framework

Advantage of parametric framework:

- Describe the whole distribution (including, for example, quantiles)
- A very general framework
- Easy to extend to very complex models (but estimation can be complicated)
Parameteric framework

Advantage of parametric framework:

- Describe the whole distribution (including, for example, quantiles)
- A very general framework
- Easy to extend to very complex models (but estimation can be complicated)

The parametric framework:

- Assume that each member of the sample y_i comes from some distribution Y_i
- Often assumed: (Y_1, \ldots, Y_n) are independent and identically distributed (iid)
- Assume that Y_i follows a known distribution parametrised by θ
- (for example $Y_i \sim \mathcal{N}(\mu, \sigma)$, with $\theta = (\mu, \sigma)$)
- Find estimates $\hat{\theta}$ based on the sample
Estimation methods

• Method of moments
• Maximum likelihood
• Bayesian approaches
Estimation methods

- Method of moments
- Maximum likelihood
- Bayesian approaches

Choice of framework and estimation method should depend on:

- Actual data properties
- Main inferential question (and importance of uncertainty assessment)
- Computational hurdle
- Model complexity
- Presence of prior information (which can be formalised)
Maximum likelihood estimation

The likelihood function is defined as

$$L(\theta; y) = \prod_{i=1}^{n} f(y_i, \theta),$$

but calculations typically employ the log-likelihood

$$l(\theta; y) = \sum_{i=1}^{n} \log f(y_i, \theta).$$

$\hat{\theta}_{ML}$ is the value that maximises $l(\theta; y)$.

Asymptotically ($n \to \infty$) we have that $\hat{\theta}_{ML} \sim N(\theta, I(\theta)^{-1})$ where $I(\theta)$ is the expected information matrix, with elements $e_{i,j}(\theta) = E[-d^2 l(\theta)/d\theta_i d\theta_j]$. Typically $I(\theta)$ is unknown: use the observed information matrix evaluated at $\hat{\theta}_{ML}$.
Maximum likelihood estimation

The likelihood function is defined as

\[L(\theta; y) = \prod_{i=1}^{n} f(y_i, \theta), \]

but calculations typically employ the log-likelihood

\[l(\theta; y) = \sum_{i=1}^{n} \log f(y_i, \theta). \]

\(\hat{\theta}_{ML} \) is the value that maximises \(l(\theta; y) \).

Asymptotically (\(n \to \infty \)) we have that \(\hat{\theta}_{ML} \sim N(\theta, I_E(\theta)^{-1}) \) where \(I_E(\theta) \) is the expected information matrix, with elements

\[e_{i,j}(\theta) = E \left[-\frac{d^2 l(\theta)}{d\theta_i d\theta_j} \right] \]

Typically \(I_E(\theta) \) is unknown: use the observed information matrix evaluated at \(\hat{\theta} \).
Parametric models for change

- Assume Y_i comes from a distribution $f(\theta_i, y_i)$
- Assume $\theta_i = g(x_i)$
- So $Y_i = (Y | X = x_i)$ with $f(g(x_i), y_i)$

Example. Linear regression (with two explanatory variables):

- $Y_i \sim N(\mu_i, \sigma)$; $\theta_i = (\mu_i, \sigma)$.
- $\mu_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i}$ - linear relationship.
- σ is constant.
- As a consequence: $E[Y_i] = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i}$, $V[Y_i] = \sigma^2$.
- We can describe Y and how it varies with X
Parametric models for change

Linear regression likelihood:

\[
l(\theta; y) = \sum_{i=1}^{n} \log f(y_i, \theta) \propto -n \log \sigma - \frac{(y - \beta_0 - \beta_1 x_{1i} - \beta_2 x_{2i})^2}{2\sigma^2}
\]

ML estimates can be derived analytically: \(\hat{\beta_0}, \hat{\beta_1}, \hat{\beta_2}, \hat{\sigma}\).

And we have, for example, \(\hat{\beta}_i \sim N(\beta_i, \hat{\sigma}_{\beta_i})\).
Parametric models for change

Linear regression likelihood:

\[
l(\theta; y) = \sum_{i=1}^{n} \log f(y_i, \theta) \propto -n \log \sigma - \frac{(y - \beta_0 - \beta_1 x_{1i} - \beta_2 x_{2i})^2}{2\sigma^2}
\]

ML estimates can be derived analytically: \((\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \hat{\sigma})\).

And we have, for example, \(\hat{\beta}_i \sim N(\beta_i, \hat{\sigma}_{\beta_i})\).

From this one can construct confidence intervals for \(\beta_i\) or perform a test such as:

\[
H_0 : \beta_0 \geq \tilde{\beta} \quad VS \quad H_1 : \beta_0 < \tilde{\beta}
\]

By default \(\tilde{\beta} = 0\), but one can test for any value \(\tilde{\beta}\) and statistical test \((=, \leq, \geq)\).\(^1\)

Notice that if \(x_j\) is a factor one can account for step changes (change points).

\(^1\)Prosdocimi et al, NHESS, doi:10.5194/nhess-14-1125-2014
Parametric models of change in extremes

Describing extremes is a different task than describing the typical behaviour.

\((y_1, \ldots, y_n)\) is a sample of extremes: what is a reasonable assumption for \(Y\)?

Extreme Value Theory gives theoretical derivation, but practice is often different.

Regardless of the choice of \(f(y, \theta)\) - parametric models of change for extremes can be easily constructed assuming \(Y_i = (Y|X = x_i)\) and \(\theta_i = g(x_i)\).
Parametric models of change in extremes

Describing extremes is a different task than describing the typical behaviour.

\((y_1, \ldots, y_n)\) is a sample of extremes: what is a reasonable assumption for \(Y\)?

Extreme Value Theory gives theoretical derivation, but practice is often different.

Regardless of the choice of \(f(y, \theta)\) - parametric models of change for extremes can be easily constructed assuming \(Y_i = (Y|X = x_i)\) and \(\theta_i = g(x_i)\).

What is an extreme?

- Largest event over a certain amount of time (eg water year, season)
- Events larger than a certain high threshold (independent events?)
Parametric models in extremes

Traditional (asymptotic) results based on extremes of stationary series:

- Block maxima: $Y \sim GEV(\mu, \sigma, \xi)$
- Threshold exceedance magnitude: $Y \sim GP(\sigma, \xi)$
- Threshold exceedance frequency: $N \sim Pois(\lambda)$
Parametric models in extremes

Traditional (asymptotic) results based on extremes of stationary series:

- Block maxima: $Y \sim GEV(\mu, \sigma, \xi)$
- Threshold exceedance magnitude: $Y \sim GP(\sigma, \xi)$
- Threshold exceedance frequency: $N \sim Pois(\lambda)$

Using exceedances typically results in larger samples (so less variability in estimates).
Parametric models in extremes

Traditional (asymptotic) results based on extremes of stationary series:

- Block maxima: \(Y \sim GEV(\mu, \sigma, \xi) \)
- Threshold exceedance magnitude: \(Y \sim GP(\sigma, \xi) \)
- Threshold exceedance frequency: \(N \sim Pois(\lambda) \)

Using exceedances typically results in larger samples (so less variability in estimates).

In practice other distributions are often assumed for Flow maxima.
Generalised Extreme Value distribution

The GEV CDF: \(F(y, \theta) = \exp \left\{ - \left(1 + \xi \frac{y - \mu}{\sigma} \right)^{-1/\xi} \right\} \)

\(\theta = (\mu, \sigma, \xi) \):

- \(\mu \in \mathbb{R} \): location parameter
- \(\sigma > 0 \); scale parameter
- \(\xi \in \mathbb{R} \): shape parameter.

\(Y \sim GEV(\mu, \sigma, \xi) \) is defined on \(y : 1 + \xi(y - \mu)/\sigma > 0 \), this means:

- \(y \in [\mu - \sigma/\xi, \infty) \), if \(\xi > 0 \) (Frechet)
- \(y \in (-\infty, \mu - \sigma/\xi] \), if \(\xi < 0 \) (Weibull)
- \(y \in (-\infty, \infty) \), if \(\xi = 0 \) (Gumbel)

BUT! In engineering/hydrology \(Y \sim GEV(\xi, \alpha, \kappa) \) and \(\kappa = -\xi \). Software can use different parametrisation.
Generalised Extreme Value distribution

Quantile function (for $\xi \neq 0$): $q(y, \theta) = \mu + \frac{\sigma}{\xi} \left[\left(-\log(1 - p)\right)^{-\xi} - 1\right]$
Generalised Extreme Value distribution

Quantile function (for $\xi \neq 0$): \[q(y, \theta) = \mu + \frac{\sigma}{\xi} \left[(- \log(1 - p))^{-\xi} - 1 \right] \]

Modelling change:

\[\mu = \mu_0 + \mu_1 x \]
Generalised Extreme Value distribution

Quantile function (for $\xi \neq 0$):
$q(y, \theta) = \mu + \frac{\sigma}{\xi} \left[(-\log(1 - p))^{-\xi} - 1 \right]$

Modelling change:

$\mu = \mu_0 + \mu_1 x$

Effective quantile for $x = x^*$:

$q(y, \theta(x^*)) = \mu_0 + \mu_1 x^* + \frac{\sigma}{\xi} \left[(-\log(1 - p))^{-\xi} - 1 \right]$
Changes in annual maxima - choice of distribution

The Lostock at Littlewood Bridge: median and effective 50-yrs event.
Changes in annual maxima

Time is not a cause for change, but land cover changes impact peak flow.

$$\mu = \mu_0 + \mu_{urb} \quad \text{while } (\sigma, \xi) \text{ constant}$$
Changes in annual maxima

Time is not a cause for change, but soil wetness impact peak flow.

\[\mu = \mu_0 + \mu_{rain} \text{rain} \quad \text{while } (\sigma, \xi) \text{ constant} \]
Changes in amax - effect of rain given Urbext

Separate effect of rain and urbanisation:

$$\mu = \mu_0 + \mu_{\text{rain}} + \mu_{\text{urb}} \quad \text{while } (\sigma, \xi) \text{ constant}$$
Changes in amax - effect of Urbext given rain

Separate effect of rain and urbanisation:

$$\mu = \mu_0 + \mu_{\text{rain}}\text{rain} + \mu_{\text{urb}}\text{urb} \quad \text{while} \ (\sigma, \xi) \ \text{constant}$$
Changes in annual maxima - estimated parameters

Rain as covariate (log-lik: -98.39)

<table>
<thead>
<tr>
<th></th>
<th>μ_0</th>
<th>μ_{urb}</th>
<th>μ_{rain}</th>
<th>σ</th>
<th>ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLE</td>
<td>-5.604</td>
<td>-</td>
<td>9.479</td>
<td>4.042</td>
<td>0.003</td>
</tr>
<tr>
<td>se</td>
<td>8.158</td>
<td>-</td>
<td>2.830</td>
<td>0.622</td>
<td>0.168</td>
</tr>
</tbody>
</table>

Urbext as covariate (log-lik: -100.0004)

<table>
<thead>
<tr>
<th></th>
<th>μ_0</th>
<th>μ_{urb}</th>
<th>μ_{rain}</th>
<th>σ</th>
<th>ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLE</td>
<td>6.53</td>
<td>1.20</td>
<td>-</td>
<td>4.17</td>
<td>0.04</td>
</tr>
<tr>
<td>se</td>
<td>4.79</td>
<td>0.40</td>
<td>-</td>
<td>0.60</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Rain and urbext as covariate (log-lik: -96.47)

<table>
<thead>
<tr>
<th></th>
<th>μ_0</th>
<th>μ_{urb}</th>
<th>μ_{rain}</th>
<th>σ</th>
<th>ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLE</td>
<td>-9.767</td>
<td>0.845</td>
<td>7.449</td>
<td>3.862</td>
<td>-0.016</td>
</tr>
<tr>
<td>se</td>
<td>7.344</td>
<td>0.422</td>
<td>2.668</td>
<td>0.580</td>
<td>0.153</td>
</tr>
</tbody>
</table>
Changes in extremes - attribution

Kendall’s $\hat{\tau}(\text{Urbext, Rain}) = 0.068$.
Changes in extremes - attribution

Kendall’s $\hat{\tau}(\text{Urbext, Rain}) = 0.068$.

Reality is complex: linear models are a (over-simplified!) representation.
Changes is peaks over threshold

Extract observations above a high threshold
Generalised Pareto Distribution

Y is taken to be the observations above a high threshold u ($Y = (X|X > u)$).

GP is the limiting distribution for the magnitude of exceedances.

$$F(y, u, \theta) = 1 - \left(1 + \xi \frac{y - u}{\tilde{\sigma}}\right)^{-1/\xi}$$

u is a constant, $\theta = (\sigma, \xi)$:

- $\sigma > 0$; scale parameter
- $\xi \in \mathbb{R}$: shape parameter.

The domain changes depending on the sign of ξ: $y \in [u, \infty)$, if $\xi \geq 0$;
$y \in (-\infty, u - \sigma/\xi]$, if $\xi < 0$.

Quantile function: $q(p, u, \theta) = u + \frac{\sigma}{\xi} (p^{-\xi} - 1)$
Generalised Pareto Distribution

Y is taken to be the observations above a high threshold u ($Y = (X|X > u)$).

GP is the limiting distribution for the magnitude of exceedances.

$$F(y, u, \theta) = 1 - \left(1 + \xi \frac{y - u}{\tilde{\sigma}} \right)^{-1/\xi}$$

u is a constant, $\theta = (\sigma, \xi)$:

- $\sigma > 0$; scale parameter
- $\xi \in \mathbb{R}$: shape parameter.

The domain changes depending on the sign of ξ: $y \in [u, \infty)$, if $\xi \geq 0$; $y \in (-\infty, u - \sigma/\xi]$, if $\xi < 0$.

Quantile function: $q(p, u, \theta) = u + \frac{\sigma}{\xi}(p^{-\xi} - 1)$

Modelling change: $\sigma_0 + \sigma_1 x$
Point Process representation of extremes

Exceedances frequency and magnitude traditionally modelled as separate processes.

They can be modelled in a unique framework using a Point Process representation of extremes \(^2\).

\[^2\text{Smith, Statist. Sci., doi:10.1214/ss/1177012400}\]
Point Process representation of extremes

Exceedances frequency and magnitude traditionally modelled as separate processes. They can be modelled in a unique framework using a Point Process representation of extremes.\(^2\) This representation is under-utilised in hydrology.

\[N = \{\text{no. Exceedance in a Year}\}. \quad N \sim \text{Pois}(\lambda) \]

\[P(\text{no. Exceedance in a Year}) \text{ is linked to magnitudes.} \]

\(^2\)Smith, Statist. Sci., doi:10.1214/ss/1177012400
Point Process representation of extremes

Exceedances frequency and magnitude traditionally modelled as separate processes.

They can be modelled in a unique framework using a Point Process representation of extremes\(^2\). This representation is under-utilised in hydrology.

\[N = \{\text{no. Exceedance in a Year}\}. \quad N \sim \text{Pois}(\lambda) \]

\(P(\text{no. Exceedance in a Year})\) is linked to magnitudes.

Express this using GEV-parameters:

\[
\log \lambda = -\frac{1}{\xi} \log \left[1 + \xi \frac{u - \mu}{\sigma} \right]
\]

\(^2\)Smith, Statist. Sci., doi:10.1214/ss/1177012400
Point Process representation of extremes

Exceedances frequency and magnitude traditionally modelled as separate processes. They can be modelled in a unique framework using a Point Process representation of extremes \(^2\). This representation is under-utilised in hydrology.

\[N = \{\text{no. Exceedance in a Year}\}. \quad N \sim Pois(\lambda) \]

\[P(\text{no. Exceedance in a Year}) \text{ is linked to magnitudes.} \]

Express this using GEV-parameters:

\[
\log \lambda = -\frac{1}{\xi} \log \left[1 + \xi \frac{u - \mu}{\sigma} \right]
\]

Express changes in magnitude and frequency in the same model

Same meaning as GEV models of change

\(^2\)Smith, Statist. Sci., doi:10.1214/ss/1177012400
Changes in Peaks - Point Process
Changes in extremes - comparing the models

Rain and urbext as covariate - GEV:

<table>
<thead>
<tr>
<th></th>
<th>μ_0</th>
<th>μ_{urb}</th>
<th>μ_{rain}</th>
<th>σ</th>
<th>ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLE</td>
<td>-9.767</td>
<td>0.845</td>
<td>7.449</td>
<td>3.862</td>
<td>-0.016</td>
</tr>
<tr>
<td>se</td>
<td>7.344</td>
<td>0.422</td>
<td>2.668</td>
<td>0.580</td>
<td>0.153</td>
</tr>
</tbody>
</table>

Rain and urbext as covariate - PP:

<table>
<thead>
<tr>
<th></th>
<th>μ_0</th>
<th>μ_{urb}</th>
<th>μ_{rain}</th>
<th>σ</th>
<th>ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLE</td>
<td>-12.139</td>
<td>0.930</td>
<td>8.007</td>
<td>4.622</td>
<td>-0.184</td>
</tr>
<tr>
<td>se</td>
<td>6.757</td>
<td>0.320</td>
<td>1.723</td>
<td>0.368</td>
<td>0.064</td>
</tr>
</tbody>
</table>
Changes in extremes - comparing the models

Rain and urbext as covariate - GEV:

<table>
<thead>
<tr>
<th></th>
<th>μ_0</th>
<th>μ_{urb}</th>
<th>μ_{rain}</th>
<th>σ</th>
<th>ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLE</td>
<td>-9.767</td>
<td>0.845</td>
<td>7.449</td>
<td>3.862</td>
<td>-0.016</td>
</tr>
<tr>
<td>se</td>
<td>7.344</td>
<td>0.422</td>
<td>2.668</td>
<td>0.580</td>
<td>0.153</td>
</tr>
</tbody>
</table>

Rain and urbext as covariate - PP:

<table>
<thead>
<tr>
<th></th>
<th>μ_0</th>
<th>μ_{urb}</th>
<th>μ_{rain}</th>
<th>σ</th>
<th>ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLE</td>
<td>-12.139</td>
<td>0.930</td>
<td>8.007</td>
<td>4.622</td>
<td>-0.184</td>
</tr>
<tr>
<td>se</td>
<td>6.757</td>
<td>0.320</td>
<td>1.723</td>
<td>0.368</td>
<td>0.064</td>
</tr>
</tbody>
</table>

Larger sample size leads to more precise estimation (statistically)

Tail estimate is quite different
Changes in extremes

Parametric approaches: easy to include predictors and test for significance
Changes in extremes

Parametric approaches: easy to include predictors and test for significance

This might be a bug and not a feature
Changes in extremes

Parametric approaches: easy to include predictors and test for significance

This might be a bug and not a feature

The assumption is that $Y_i = (Y|X = x_i)$ follows $f(y; \theta)$ - goodness of fit should be carried out on residuals

Statistical EVT and practice are not aligned
Detection

Methods sometimes chosen because of data availability

Statistical models rely on assumption of iid random observations

Short records: hard to identify complex evolutions

Short records: hard to observe a good range of the explanatory variable

When detecting “change”: what are we detecting?\(^3\)

\(^3\)Merz et al, HESS, doi:10.5194/hess-16-1379-2012
Golden standard of causality is randomised trials: what about observational studies?

Climate sciences reproduce the treatment/placebo framework with numerical experiments (how good for extremes?).

Some numerical experiments done in hydrology - but systems are complex.

Causality: a cascade of impacts (with feedback⁴)

Changes in annual maxima - uncertainty

Structures are designed for the “T-Year” event: estimated as the 1-1/T quantile.

If the distribution is changing so is the quantile.
Changes in annual maxima - uncertainty

Structures are designed for the “T-Year” event: estimated as the $1-1/T$ quantile.

If the distribution is changing so is the quantile.

<table>
<thead>
<tr>
<th></th>
<th>Q100</th>
<th>95% lb</th>
<th>95% ub</th>
<th>width</th>
</tr>
</thead>
<tbody>
<tr>
<td>no-change</td>
<td>30.514</td>
<td>41.837</td>
<td>53.159</td>
<td>11.322</td>
</tr>
<tr>
<td>Rain = max(Rain)</td>
<td>33.676</td>
<td>48.403</td>
<td>63.130</td>
<td>14.727</td>
</tr>
</tbody>
</table>

Adding parameters adds variation to the estimates - is it worth it?
Changes in annual maxima - uncertainty

Structures are designed for the “T-Year” event: estimated as the 1-1/T quantile.

If the distribution is changing so is the quantile.

<table>
<thead>
<tr>
<th></th>
<th>Q100</th>
<th>95% lb</th>
<th>95% ub</th>
<th>width</th>
</tr>
</thead>
<tbody>
<tr>
<td>no-change</td>
<td>30.514</td>
<td>41.837</td>
<td>53.159</td>
<td>11.322</td>
</tr>
<tr>
<td>Rain = max(Rain)</td>
<td>33.676</td>
<td>48.403</td>
<td>63.130</td>
<td>14.727</td>
</tr>
</tbody>
</table>

Adding parameters adds variation to the estimates - is it worth it?

Bias-variance trade-off and parsimonious models.
Changes in extremes - consequences

How to quantify risk under change?\(^5\)

Choice of distribution has an impact on estimates of rare events.

Today I used “effective design events”: \(q(p; \hat{\theta})\). So at \(X = x^*\): \(q(p; \hat{\theta}(x^*))\).

Choice of distribution/model has an impact on estimates of rare events.

Choice of model has an impact of description of change\(^6\).

GEV quantile function (for \(\xi \neq 0\)): \(q(y, \theta) = \mu + \frac{\sigma}{\xi} \left[(- \log(1 - p))^{-\xi} - 1\right]\)

Compare effective return levels for \(x^*\) and \(x_0\):

\[
q(p; \hat{\theta}(x^*)) - q(p; \hat{\theta}(x_0)) = \mu_1 (x^* - x_0)
\]

\(^5\)Volpi, Wires Water, doi:10.1002/wat2.1340

\(^6\)Vogel et al JAWRA doi:10.1111/j.1752-1688.2011.00541.x
Coles, S (2001), An introduction to statistical modeling of extreme values, Springer

Doing science the right way

Reproducibility crisis in several fields - open science movement as a result.

Replicability (i.e. being able to re-run the analysis) should be a given.

Start any project in a replicable way: literate programming and programmatic interaction with data (access, manipulation, analysis).

In R (and Python) this is increasingly feasible.

Slides code at github.com/ilapros - done in rmarkdown