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Change (?)

Increasing interest in assessing changes in extremes related to natural hazards.

Many studies investigate changes in extreme rainfall and extreme flows.

Changes in magnitude/frequencies: infrastructures are designed to withstand
extreme events of some magnitude.

Problematic if these become more (or less!) frequent.
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What causes change

from Prosdocimi et al. (2015), WRR, doi:10.1002/2015WR017065
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doi:10.1002/2015WR017065


What causes change

from Lopez Frances (2013), HESS, doi:10.5194/hess-17-3189-2013
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doi:10.5194/hess-17-3189-2013


What causes change

Implicit assumption:
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NOAA National Centers for Environmental information, Climate at a Glance: 
 Global Time Series, published June 2020, retrieved on July 5, 2020 from https://www.ncdc.noaa.gov/cag/
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Why study change?

• Understand if process of interest (river flow, rainfall, etc) is evolving in time
• Understand how process of interest is affected by external drivers
• Assess risk connected to a certain hazard and its evolution
• If this is changing, how to account for this

Detection,

attribution and management.
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The Lostock at Littlewood Bridge
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The Lostock at Littlewood Bridge
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Statistical tools

We assume that y = (y1, . . . , yn) is a random sample from a population.

We are interested in discovering some property of the population.

Inference framework:

• Parametric: assume that yi is a realisation of some distribution described by
parameters θ (f (yi ; θ))
• Non-parametric: no assumption on the distribution of f (y) is made (well, less
assumptions. . . )
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Parameteric framework
Advantage of parametric framework:

• Describe the whole distribution (including, for example, quantiles)

• A very general framework

• Easy to extend to very complex models (but estimation can be complicated)

The parametric framework:

• Assume that each member of the sample yi comes from some distribution Yi

• Often assumed: (Y1, . . . ,Yn) are independent and identically distributed (iid)

• Assume that Yi follows a known distribution parametrised by θ

• (for example Yi ∼ N(µ, σ), with θ = (µ, σ))

• Find estimates θ̂ based on the sample
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Estimation methods

• Method of moments
• Maximum likelihood
• Bayesian approaches

Choice of framework and estimation method should depend on:

• Actual data properties
• Main inferential question (and importance of uncertainty assessment)
• Computational hurdle
• Model complexity
• Presence of prior information (which can be formalised)
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Maximum likelhood estimation
The likelihood function is defined as

L(θ; y) =
n∏

i=1
f (yi ,θ),

but calculations typically employ the log-likelihood

l(θ; y) =
n∑

i=1
log f (yi ,θ).

θ̂ML is the value that maximises l(θ; y).

Asymptotically (n→∞) we have that θ̂ML ∼ N(θ, IE (θ)−1) where IE (θ) is the
expected information matrix, with elements

ei,j(θ) = E
[
− d2l(θ)

dθidθj

]
Typically IE (θ) is unknown: use the observed information matrix evaluated at θ̂.
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Parametric models for change

• Assume Yi comes from a distribution f (θi , yi)
• Assume θi = g(x i)
• So Yi = (Y |X = xi) with f (g(x i), yi)

Example. Linear regression (with two explanatory variables):

• Yi ∼ N(µi , σ); θi = (µi , σ).
• µi = β0 + β1x1i + β2x2i - linear relationship.
• σ is constant.
• As a consequence: E [Yi ] = β0 + β1x1i + β2x2i , V [Yi ] = σ2.
• We can describe Y and how it varies with X
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Parametric models for change

Linear regression likelihood:

l(θ; y) =
n∑

i=1
log f (yi ,θ) ∝ −n log σ − (y − β0 − β1x1i − β2x2i)2

2σ2

ML estimates can be derived analytically: (β̂0, β̂1, β̂2, σ̂).

And we have, for example, β̂i ∼ N(βi , σ̂βi ).

From this once can construct confidence intervals for βi or perform a test such as:

H0 : β0 ≥ β̃ VS H1 : β0 < β̃

By default β̃ = 0, but one can test for any value β̃ and statistical test (=, ≤, ≥).1

Notice that if xj is a factor one can account for step changes (change points).

1Prosdocimi et al, NHESS, doi:10.5194/nhess-14-1125-2014
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Parametric models of change in extremes

Describing extremes is a different task than describing the typical behaviour.

(y1, . . . , yn) is a sample of extremes: what is a reasonable assumption for Y?

Extreme Value Theory gives theoretical derivation, but practice is often different.

Regardless of the choice of f (y ,θ) - parametric models of change for extremes can
be easily constructed assuming Yi = (Y |X = xi) and θi = g(x i).

What is an extreme?

• Largest event over a certain amount of time (eg water year, season)
• Events larger than a certain high threshold (independent events?)
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Parametric models in extremes

Traditional (asymptotic) results based on extremes of stationary series:

• Block maxima: Y ∼ GEV (µ, σ, ξ)
• Threshold exceedance magnitude: Y ∼ GP(σ, ξ)
• Threshold exceedance frequency: N ∼ Pois(λ)

Using exceedances typically results in larger samples (so less variability in estimates).

In practice other distributions are often assumed for Flow maxima.
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Generalised Extreme Value distribution

The GEV CDF: F (y ,θ) = exp
{
−
(
1 + ξ

y − µ
σ

)−1/ξ
}

θ = (µ, σ, ξ):

• µ ∈ R: location parameter
• σ > 0; scale parameter
• ξ ∈ R: shape parameter.

Y ∼ GEV (µ, σ, ξ) is defined on y : 1 + ξ(y − µ)/σ > 0, this means:

• y ∈ [µ− σ/ξ,∞), if ξ > 0 (Frechet)
• y ∈ (−∞, µ− σ/ξ], if ξ < 0 (Weibull)
• y ∈ (−∞,∞), if ξ = 0 (Gumbel)

BUT! In engineering/hydrology Y ∼ GEV (ξ, α, κ) and κ = −ξ. Software can use
different parametrisation.
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Generalised Extreme Value distribution

Quantile function (for ξ 6= 0) : q(y , θ) = µ+ σ

ξ

[
(− log(1− p))−ξ − 1

]

Modelling change:
µ = µ0 + µ1x

Effective quantile for x = x∗:

q(y , θ(x∗)) = µ0 + µ1x∗ + σ

ξ

[
(− log(1− p))−ξ − 1

]
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Changes in annual maxima - choice of distribution
The Lostock at Littlewood Bridge: median and effective 50-yrs event.
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Changes in annual maxima
Time is not a cause for change, but land cover changes impact peak flow.

µ = µ0 + µurburb while (σ, ξ) constant
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Changes in annual maxima
Time is not a cause for change, but soil wetness impact peak flow.

µ = µ0 + µrainrain while (σ, ξ) constant
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Changes in amax - effect of rain given Urbext
Separate effect of rain and urbanisation:

µ = µ0 + µrainrain + µurburb while (σ, ξ) constant
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Changes in amax - effect of Urbext given rain
Separate effect of rain and urbanisation:

µ = µ0 + µrainrain + µurburb while (σ, ξ) constant
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Changes in annual maxima - estimated parameters
Rain as covariate (log-lik: -98.39)

µ0 µurb µrain σ ξ

MLE -5.604 - 9.479 4.042 0.003
se 8.158 - 2.830 0.622 0.168

Urbext as covariate (log-lik: -100.0004)

µ0 µurb µrain σ ξ

MLE 6.53 1.20 - 4.17 0.04
se 4.79 0.40 - 0.60 0.13

Rain and urbext as covariate (log-lik: -96.47)

µ0 µurb µrain σ ξ

MLE -9.767 0.845 7.449 3.862 -0.016
se 7.344 0.422 2.668 0.580 0.153
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Changes in extremes - attribution

Kendall’s τ̂(Urbext, Rain) = 0.068.

Reality is complex: linear models are a (over-simplified!) representation.
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Changes is peaks over threshold
Extract observations above a high threshold
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Generalised Pareto Distribution
Y is taken to be the observations above a high threshold u (Y = (X |X > u)).

GP is the limiting distribution for the magnitude of exceedances.

F (y , u,θ) = 1−
(
1 + ξ

y − u
σ̃

)−1/ξ

u is a constant, θ = (σ, ξ):

• σ > 0; scale parameter
• ξ ∈ R: shape parameter.

The domain changes depending on the sign of ξ: y ∈ [u,∞), if ξ ≥ 0;
y ∈ (−∞, u − σ/ξ], if ξ < 0.

Quantile function: q(p, u,θ) = u + σ

ξ
(p−ξ − 1)

Modelling change: σ0 + σ1x
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Point Process representation of extremes
Exceedances frequency and magnitude traditionally modelled as separate processes.

They can be modelled in a unique framework using a Point Process representation of
extremes 2.

This representation is under-utilised in hydrology.

N = {no. Exceedance in a Year}. N ∼ Pois(λ)

P(no. Exceedance in a Year) is linked to magnitudes.

Express this using GEV-parameters:

log λ = −1
ξ

log
[
1 + ξ

u − µ
σ

]
Express changes in magnitude and frequency in the same model

Same meaning as GEV models of change

2Smith, Statist. Sci., doi:10.1214/ss/1177012400
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Changes in Peaks - Point Process
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Changes in extremes - comparing the models
Rain and urbext as covariate - GEV:

µ0 µurb µrain σ ξ

MLE -9.767 0.845 7.449 3.862 -0.016
se 7.344 0.422 2.668 0.580 0.153

Rain and urbext as covariate - PP:

µ0 µurb µrain σ ξ

MLE -12.139 0.930 8.007 4.622 -0.184
se 6.757 0.320 1.723 0.368 0.064

Larger sample size leads to more precise estimation (statistically)

Tail estimate is quite different
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Changes in extremes

Parametric approaches: easy to include predictors and test for significance

This might be a bug and not a feature

The assumption is that Yi = (Y |X = xi) follows f (y ; θ) - goodness of fit should be
carried out on residuals

Statistical EVT and practice are not aligned
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Detection

Methods sometimes chosen because of data availability

Statistical models rely on assumption of iid random observations

Short records: hard to identify complex evolutions

Short records: hard to observe a good range of the explantory variable

When detecting “change”: what are we detecting?3

3Merz et al, HESS, doi:10.5194/hess-16-1379-2012
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Attribution

Golden standard of causality is randomised trials: what about observational studies?

Climate sciences reproduce the treatment/placebo framework with numerical
experiments (how good for extremes?).

Some numerical experiments done in hydrology - but systems are complex.

Causality: a cascade of impacts (with feedback4)

4Zhang et al, Nature, doi:10.1038/s41586-018-0676-z
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Changes in annual maxima - uncertainity

Structures are designed for the “T-Year” event: estimated as the 1-1/T quantile.

If the distribution is changing so is the quantile.

Q100 95% lb 95% ub width

no-change 30.514 41.837 53.159 11.322
Rain = max(Rain) 33.676 48.403 63.130 14.727

Adding parameters adds variation to the estimates - is it worth it?

Bias-variance trade-off and parsimonious models.
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Changes in extremes - consequences
How to quantify risk under change?5

Choice of distribution has an impact on estimates of rare events

Today I used “effective design events”: q(p; θ̂). So at X = x∗: q(p; θ̂(x∗)).

Choice of distribution/model has an impact on estimates of rare events.

Choice of model has an impact of description of change6.

GEV quantile function (for ξ 6= 0) : q(y , θ) = µ+ σ

ξ

[
(− log(1− p))−ξ − 1

]
Compare effective return levels for x∗ and x0:

q(p; θ̂(x∗))− q(p; θ̂(x0)) = µ1(x∗ − x0)

5Volpi, Wires Water, doi:10.1002/wat2.1340
6Vogel et al JAWRA doi:10.1111/j.1752-1688.2011.00541.x

35/37



(Statistical) recommended reading

Coles, S (2001), An introduction to statistical modeling of extreme values, Springer

Katz, R.W., Parlange, M.B. and Naveau, P., 2002. Statistics of extremes in
hydrology. Advances in water resources, 25(8-12), pp.1287-1304.

Katz, Richard (2013) Statistical Methods for Nonstationary Extremes, Chapter 2 in
A. AghaKouchak et al. (eds.), Extremes in a Changing Climate, Water Science and
Technology Library 65, DOI 10.1007/978-94-007-4479-0 2,
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Doing science the right way

Reproducibility crisis in several fields - open science movement as a result.

Replicability (i.e. being able to re-run the analysis) should be a given.

Start any project in a replicable way: literate programming and programmatic
interaction with data (access, manipulation, analysis).

In R (and Python) this is increasingly feasible.

Slides code at github.com/ilapros - done in rmarkdown
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https://github.com/ilapros/PerugiaSummerSchool/tree/master/July2020
https://rmarkdown.rstudio.com/

