Beyond traditional extreme value theory: lessons learned from rainfall and hurricane intensity

Marco Marani1,2, Enrico Zorzetto2, Arianna Miniussi1, Seyed Reza Hosseini3, Marco Scaioni3, Gabriele Villarini4
1Universita’ di Padova, 2Duke University, 3Polytechnic Milan, 4University of Iowa
A little motivation. Extremes of all types...
91% of disasters worldwide caused by floods, storms, droughts, heatwaves, and other extreme weather events;

Extreme storms/floods affected ~3 billion people in 1998-2017, causing 69% of disaster-related economic losses (~ 2 \cdot 10^{12} \text{ US\$}).

Some motivation

Given a stochastic quantity x,

- Expected lifetime (V_N)
- Level of Risk accepted (R)

- Return Time (T_r)

- Estimated quantile $\hat{x}(T_r)$

- Design of related structures
- Optimal water planning
Data Rich Hydrology

Pliny the Elder’s calibration of the River Nile’s stage

1 ELL = 1.1 m

Disaster
Abundance
Security
Happiness
Suffering
Hunger

Toussoun, 1922
Hurst, 1927

Egyptian Nilometers

Elephantine island

Roda

‘Nilometers’
Max flood levels at Roda

Average recurrence interval or return time: $Tr(x)$ = \textbf{average} time intervals between two successive exceedances of x
Max floods levels at Roda

Because $x' < x$, then $Tr(x') < Tr(x)$
An important application: precipitation.

Data Rich Hydrology:

First obs.: India IV century BC

In Europe: Benedetto Castelli (1578-1643)

Sir Christopher Wren (1632-1723)
Giovanni Poleni (Venice 1683- Padova 1761)
Data Rich Hydrology: precipitation in Padova (1725- today)

Giovanni e Francesco Poleni via Beato Pellegrino 1725-1764

Giovanne Santini: Specola 1823-1877

Giuseppe Toaldo e Vincenzo Chiminello: Specola 1768-1813

Giovanni Santini: Specola 1823-1877

Giuseppe Lorenzoni: Specola 1878-1934

Magistrato alle Acque di Venezia: Osservatorio G. Magrini 1936-1996

ARPAV Orto Botanico: 1997-presente
Original records at the Padova observatory

<table>
<thead>
<tr>
<th>Anno</th>
<th>Gennaio</th>
<th>punti</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1833</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The Padova daily precipitation time series 1725-2006

(Marani and Zanetti, 2015)
Data Rich Hydrology?

Global Rainfall Extremes? Large gaps in observational networks

And even fewer stations are long enough for extreme rainfall analysis

Kidd et al., BAMS, 2016
Remote sensing estimates of rainfall

- Continental to quasi-global coverage;
- Short observational period (max < 20 yrs);
- Testing vs point obs?
- Downscaling?
Classical Extreme Value Theory (EVT)
[Fischer-Tippett-Gnedenko, 1928-1943]

\[x_n = \max_i \{x_i\} \quad H_n(x) = F(x)^n \quad \text{for independent, identically distributed } x_i \]

‘Block Maxima’:
\(M_n \) = Maximum value occurred within a \(n \)-event block
What is the distribution of \(M_n \)?

Three-Type Theorem:
- As \(n \to \infty \)
- After proper renormalization, are only three ‘types’ of asymptotic distribution for \(M_n \):
 - Gumbel
 - Frechet
 - Weibull

\(\text{Often block size = one year} \)
The GEV distribution

[Von Mises, 1936]

\[H(x) = \exp \left\{ - \left[1 + \frac{\xi}{\psi} (x - \mu) \right]_+ \frac{1}{\xi} \right\} \]

Shape Parameter:

- \(\xi > 0 \) Frechet, ‘heavy’ tailed
- \(\xi \to 0 \) Gumbel, exponential tail;
- \(\xi < 0 \) Inverse Weibull, upper bounded.

Quantiles corresponding to return periods of interest can be retrieved:

\[F_r = 1 - \frac{1}{T_r} \quad \hat{h} = H^{-1}(F_r) \]
Exponential and Power-law decays

Two radically different types of extremes!
Peak Over Threshold Method (POT)
[Balkema, De Haan & Pickand, 1975; Davison and Smith, 1990]

For a fixed threshold q → Exceedances $Y_i = H_i - q$ i. i. d. r. v.

$$P(Y_{max} < x) = \sum_{n=1}^{\infty} p(n) \cdot F(x)^n = \sum_{n=1}^{\infty} \frac{\lambda^n e^{-n}}{n!} \cdot \left\{1 - \left[1 + \frac{\xi}{\psi} \cdot (x - q)\right]^{-1/\xi}\right\}^n$$

- Exceedances arrivals → Poisson
- Distribution of excesses → Generalized Pareto

Advantages:
1. Better description of the ‘tail’
2. Consistent with GEV

$y_i = h_i - q$
Considerations on the application of the classical EVT

- Uncertain convergence of actual distribution to limiting one (some suggest observed Frechet is a result of incomplete convergence to Gumbel, e.g. Koutsoyiannis, 2013; Serinaldi and Kilsby, 2014).

- Fitting of GEV using Maximum Likelihood only uses yearly maxima and neglects most of the data. Important in the presence of short observations.

- Use of POT requires identification of threshold, uses more data but still a fraction of all available information.

- When number of events is small (dry climates, hurricanes, ...), yearly maxima also come from bulk of distribution, not just the tail (we are far from a limiting form)
A Metastatistical Extreme Value Distribution (MEVD)

The Block-maxima distribution

\[x_n = \max_n(x_i) \]

\[H_n(x) = F(x)^n \]

for independent, identically distributed \(X_i \)’s

The compound block-maxima distribution accounting for stochastic \(n \) and parameters of “ordinary” events pdf

\[\zeta(x) = \sum_{n=1}^{\infty} \int_{\Omega_{\bar{\theta}}} F(x; \bar{\theta})^n g(n, \bar{\theta}) d\bar{\theta} \]

\[G(n, \theta) = \text{joint prob distrib. of the parameters.} \]

Marani and Ignaccolo, 2015; Zorzetto et al., 2016
The MEV block-maxima distribution:

\[\zeta(x) = \sum_{n=1}^{\infty} \int_{\Omega_{\tilde{\theta}}} F(x; \tilde{\theta})^n g(n, \tilde{\theta}) \, d\tilde{\theta} \]

\[G(n, \theta) = \text{joint prob distrib. of the parameters.} \]

Can be approximated using sample averages:

\[\zeta(x) \approx \frac{1}{T} \sum_{j=1}^{T} F(x; \tilde{\theta}_j)^{n_j} \]

\(T = \text{# sub-periods over which n and } \theta \text{ are estimated} \)

Marani and Ignaccolo, 2015; Zorzetto et al., 2016
Rainfall: what $F(x)$ - the pdf of daily «ordinary» rainfall?

[Wilson e Tuomi, 2005]

Assumptions
- Heavy precipitation events dominated by moisture advection
- Negligible contribution from local evaporation

Weibull Parent distribution
- Simple two-layers atmospheric model
- Temporal average

Weibull ∈ domain of attraction of Gumbel, but convergence is very slow!

$R_{acc} = \bar{k}\bar{q}m$

$F(x) = 1 - e^{\left(\frac{x}{\bar{C}}\right)^w}$

$\bar{k} = \text{precipitation efficiency}$
$\bar{q} = \text{specific humidity}$
$m = \text{advection mass}$

It would need a disproportionally large number of events N for Gumbel to hold. Frechet is improperly used instead.
The MEV expression:

\[
\zeta(x) \approx \frac{1}{T} \sum_{j=1}^{T} F(x; \theta_j)^{n_j}
\]

In the Weibull case becomes:

\[
\zeta(x) \approx \frac{1}{T} \sum_{j=1}^{T} \left[1 - e^{\left(\frac{x}{C_j}\right)^{w_j}} \right]^{n_j}
\]

Marani and Ignaccolo, 2015; Zorzetto et al., 2016
Weibull-distributed synthetic data
The Padova daily precipitation time series 1725-2006

(Marani and Zanetti, 2015)
Padova series:
Wide fluctuations in pdf parameters and in number of events.

(Marani and Ignaccolo, 2015)
The Metastatistical Extreme Value distribution (MEV)

(Marani and Ignaccolo, AWR, 2015; Zorzetto et al., GRL, 2016)

Padova: Daily rainfall 1725- today

Marani and Zanetti, WRR, 2015
36 datasets, **106-275** years of daily observations, (\(<L> = 135 \) yrs)
Less than 5% of missing data
Method of analysis

Reshuffling of daily data preserving
(1) yearly number of events, and
(2) observed values (i.e. Pdf’s)

- To eliminate correlation and non-stationarity
- Preserving the true (unknown) distribution of the parameters and numbers of wet days.

Selection of a T-year sample from which compute \(\hat{x} (T_r, T) \) with GEV, POT and MEV.

The remainder of the dataset is used to observe the ‘true value’ \(x_{obs} (T_r) \) to assess the performance of EV methods.

Non dimensional estimation error

\[
\epsilon = \sqrt{\frac{1}{N} \sum \left(\frac{\hat{x}}{x_{obs}} - 1 \right)^2}
\]
Ratio of MEV estimation error to GEV-LMOM error

NOAA-NCDC Worldwide dataset

Sample size [Years]

Frequency

Return Time [Years]

$\frac{\rho_{MEV}}{\rho_{GEV}}$
Relative estimation error as a function of $\text{Tr}/(\text{sample size})$ when training and testing data are separate

MEV vs. GEV-LMOM

MEV outperforms GEV when $\text{Tr} > \text{sample size}$; Reduction by 50% of estimation error

MEV error $\sim 20\%$ for very large Tr

Zorzetto et al., GRL 2016
Distribution of the error computed over 1000 random generation
s, for all the analyzed datasets.

Theoretical quantiles (Tr=100 yrs) estimated by
GEV, POT, MEV calibrated over 30-years samples

Error distribution
\[\epsilon = x - \bar{x} \]
\[x = F^{-1}(1 - \frac{1}{T_r}) \]

(Non-dimensional Error)

Tr=10 Global Histogram

Tr=20 Global Histogram

Tr=50 Global Histogram

Tr=100 Global Histogram

Frequency Density

Frequency Density

Frequency Density

Frequency Density

Frequency Density

Frequency Density
An interesting observation: GEV performs better if calibration data = testing data
Hourly rainfall (Marra et al., AWR 2018):

- MEV uncertainty ~50% < GEV

- MEV less sensitive than GEV to errors in data (saturation at high values, missing largest values, etc.)
Conclusions (1/3)

MEV ouperforms classical EV distributions providing:

1. Reduced uncertainty (50%) for Tr > sample size
2. Better use of the available daily data
3. Removal of asymptotic/Poisson hypotheses
Slight detour: return time under climate fluctuations

Oscillations associated with climate variability (and trends?)

\[\text{TR} = 100 \text{ yrs} \]

(Marani and Zanetti, WRR 2015; Zorzetto et al., in preparation)
TRMM Multi satellite Precipitation Analysis (TMPA)

3B42 V7 TMPA: research quality Combination of multiple sensors, chiefly microwave and infrared.

Fairly coarse 0.25°x0.25° spatial resolution

Up to 3 hours temporal resolution

Useful for Inference on rainfall pdfs and extremes?
- QPE errors
- Short record length

(Huffman et al, 2007)

(Enrico Zorzetto, under NASA Fellowship NESSF 17-EARTH17F-270)
Global Rainfall Extremes: Gaps in global observational networks

But fewer stations are long enough for Extreme rainfall frequency analysis

Kidd et al., BAMS, 2016
How to validate QPE rainfall pdfs using point measurements?

Parameters of rainfall pdf downscaled using closed-form relations from space-time stochastic rainfall models

Case study in Oklahoma, Little Washita watershed

TRMM observations (1 pixel)

Rainfall pdf at a point

Rainfall pdf at pixel scale

Additional Tests:
TRMM observations (3x3 pixels)
A Metastatistical Extreme Value distribution (MEV)

The MEV block-maxima distribution:

\[\zeta(x) = \sum_{n=1}^{\infty} \int_{\Omega} F(x; \bar{\theta})^n g(n, \bar{\theta}) d\bar{\theta} \]

G(n, \theta) = joint prob distrib. of the parameters.

Can be approximated using sample averages:

\[\zeta(x) \approx \frac{1}{T} \sum_{j=1}^{T} F(x; \bar{\theta}_j)^{n_j} \]

T = # sub-periods over which n and \(\theta \) are estimated

Marani and Ignaccolo, 2015; Zorzetto et al., 2016
A downscaling approach for TMPA gridded data

We transform across scales the following quantities

The mean is conserved across scales
\[\mu_0 = \mu_L. \]

The variance increase of a factor \(\gamma \)

\[
\sigma_0^2 = \frac{1}{\gamma} \sigma_L^2, \quad \gamma = \frac{\sigma_{cL}^2}{\sigma_{c0}^2} = \frac{4}{L_x^2 L_y^2} \int_0^{L_x} \int_0^{L_y} (L_x - x) (L_y - y) \rho(x, y) \, dx \, dy
\]

[Vanmarcke, 2010]

Variation of the yearly number of daily events/year

\[
\gamma_s (L) = \frac{N_L}{N_0}
\]

[Zorzetto and Marani, 2018] Can we infer these quantity from TMPA alone?
Precipitation spatial correlation at the point scale

\[\Delta(L_{x,k}, L_{y,l}) = 4 \int_0^{L_{x,k}} \int_0^{L_{y,l}} (L_{x,k} - s_1)(L_{y,l} - s_2) \rho(s_1, s_2) \, ds_1 \, ds_2 \]

Correlation of local averages

\[\text{Cov}[h_L, h_{L'}] = \frac{\sigma_0^2}{4(L_x L_y)} \sum_{k=0}^{3} \sum_{l=0}^{3} (-1)^k (-1)^l \Delta(L_{x,k}, L_{y,l}) \]

Distances \(L_{x,k}\) and \(L_{y,k}\) with \(k, l = 0, 1, 2, 3\) encode the relative position of the two pixels. Assume correlation function:

\[\rho(s) = \begin{cases} e^{-\frac{\alpha s}{\epsilon}} & s < \epsilon \\ \left(\frac{\epsilon}{\epsilon s}\right)^{\alpha} s \geq \epsilon, \quad s = \sqrt{x^2 + y^2} \end{cases} \]

From Marani, 2003

From Vanmarcke, 2010

(Zorzetto and Marani, WRR, 2018)
Precipitation spatial correlation at the point scale

\[
\triangle(L_{x,k}, L_{y,l}) = 4 \int_0^{L_{x,k}} \int_0^{L_{y,l}} (L_{x,k} - s_1) (L_{y,l} - s_2) \rho(s_1, s_2) ds_1 ds_2
\]

Correlation of local averages

\[
\text{Cov}[h_L, h_{L'}] = \frac{\sigma_0^2}{4 (L_x L_y)^2} \sum_{k=0}^3 \sum_{l=0}^3 (-1)^k (-1)^l \triangle(L_{x,k}, L_{y,l})
\]

Distances \(L_{x,k}\) and \(L_{y,k}\) with \(k, l = 0, 1, 2, 3\) encode the relative position of the two pixels. Assume correlation function:

\[
\rho(s) = \begin{cases}
 e^{-\frac{\alpha s}{\epsilon}} & s < \epsilon \\
 \left(\frac{\epsilon}{\epsilon s}\right)^{\alpha} & s \geq \epsilon,
\end{cases} \quad s = \sqrt{x^2 + y^2}
\]

From Marani, 2003

Assumed Correlation function shape

TMPA correlation

Downscaled correlation
Downscaling of the pdf of ordinary daily rainfall

(Zorzetto and Marani, WRR, 2018)
A downscaling approach for TMPA gridded data

We transform across scales the following quantities

The mean is conserved across scales
\[\mu_0 = \mu_L. \]

The variance increase of a factor \(\gamma \)
\[
\sigma_0^2 = \frac{1}{\gamma} \sigma_L^2, \quad \gamma = \frac{\sigma_{cL}^2}{\sigma_{c0}^2} = \frac{4}{L_x^2 L_y^2} \int_0^{L_x} \int_0^{L_y} (L_x - x) (L_y - y) \rho(x, y) \, dx \, dy
\]

[Vanmarcke, 2010]

Variation of the yearly number of daily events/year
\[\gamma_s (L) = \frac{N_L}{N_0} \quad \text{Effect of spatial intermittency} \]

[Zorzetto and Marani, 2018]
Can we infer these quantity from TMPA alone?
Downscaling of the Number of rainfall events: “frozen turbulence” hypothesis

\[\gamma_s(L) = \frac{p_{\text{TMPA}}(L)}{p_{\text{GAUGE}}} \]

Effect of spatial intermittency

(Zorzetto and Marani, WRR, 2018)
Cross-Validation Analysis

Root Mean Square Error \(R(s, Tr) = \left(\frac{1}{n_g} \sum_{i=1}^{n_g} \left[\frac{\hat{h}_i(Tr) - h_{i, obs}(s_s, Tr)}{hiobs(Tr)} \right]^2 \right)^{1/2} \)

Error of the downscaling technique (green) vs ground observations (red, blue).

From TMPA satellite estimates alone

Zorzetto and Marani, WRR, 2018
Continental USA - **GEV**, 100-year daily rainfall event from all TRMM-TMPA observations (3B42 V7 - 17 yrs)

Daily TRMM 3B42 V7 data:
Quasi global (+50°N, -50°S);
0.25°x0.25° spatial resolution

Zorzetto and Marani, in preparation, 2019
Continental USA – MEV, 100-yr daily rainfall event from all TRMM-TMPA observations (3B42 V7 - 17 yrs)

Daily TRMM 3B42 V7 data:
Quasi global (+50°N, -50°S);
0.25°x0.25° spatial resolution

Zorzetto and Marani, In preparation, 2019
Comparisons of extreme event (Tr=100 yrs) distribution patterns

(Zhou et al., 2015)

Gauge-based (APHRODITE)

GEV - TRMM

MEV-TRMM (this work)

Zorzetto and Marani, in preparation, 2019
Conclusions (2/3):

• Downscaling yields rainfall pdf at a point. **Validation of TMPA** feasible even with **sparse ground observations**.

• We can reconstruct **rainfall statistics at a point** in space, **uniquely based on areal-average satellite precipitation estimates**

• **ongoing work**: investigation of method performance over **inhomogeneous and complex terrain**

(Source:NASA)
Extreme Atlantic hurricanes

Reza Hosseini, Polytechnic Milan

Marco Scaioni, Polytechnic Milan
### Category	Wind speeds
Five	≥70 m/s, ≥137 knots
	≥157 mph, ≥252 km/h
Four	58–70 m/s, 113–136 knots
	130–156 mph, 209–251 km/h
Three	50–58 m/s, 96–112 knots
	111–129 mph, 178–208 km/h
Two	43–49 m/s, 83–95 knots
	96–110 mph, 154–177 km/h
One	33–42 m/s, 64–82 knots
	74–95 mph, 119–153 km/h
The MEV expression is:

$$
\zeta(x) = \frac{1}{T} \sum_{j=1}^{T} F(x; \theta_j)^{n_j}
$$

T = # sub-periods over which \(n \) and \(\theta \) are estimated

We find that the Generalized Pareto Distribution (GPD) best describes ‘ordinary’ Hurricanes:

$$
\zeta(x) = \frac{1}{T} \sum_{j=1}^{T} \left[1 - \left(1 - k_j \frac{(x - u)}{\sigma_j} \right)^{\frac{1}{k}} \right]^{n_j}
$$

Hosseini et al., submitted, 2019
Hurdat 2 analysis (cross validation with independent randomized calibration and test datasets).

Extreme Hurricanes: MEVD (GPD) vs. traditional GEV

Hosseini et al, submitted, 2019

50-70% Improvement in estimation uncertainty
GPD parameters and # hurricanes/year as a function of Sea Surface Temperature (SST in the ACR)

Hosseini et al, submitted, 2019
Hindcast and projection of extreme-hurricane probability

Hosseini et al, submitted, 2019
Conclusions (3/3):

- Generalized Pareto Distribution of ordinary hurricane intensity;

- MEVD-GPD improves estimation uncertainty by 50%-70% in the case of atlantic hurricane intensity.

- MEVD can be successfully used to infer the effects on changes in ordinary events on the distribution of large extremes.
MEVD shows practical and conceptual advantages over traditional EVT (rainfall, floods, storm surges, wind)

- links extremes to “ordinary” events:
 large samples, interannual variability/trends, physical processes

Time to move beyond limiting distributions and Poisson arrivals...
Tr=100 daily rainfall from TRMM observations (17 yrs)
Global QQ plots

GEV/ POT are a good fit for the calibration sample but they fail in describing the stochastic process from which the sample has been generated.

MEV allows a better description of the underlying process; less variance in high quantile estimation.
RMSE ratios for several Sample sizes and return times

\[RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{\hat{x} - x_{obs}}{x_{obs}} \right)^2} \]

RATIO RMSE MEV/ LMOM

MEV-PWM

GEV-LMOM
Stationarity Is Dead: Whither Water Management?

P. C. D. Milly,1* Julio Betancourt,2 Malin Falkenmark,3 Robert M. Hirsch,4 Zbigniew W. Kundzewicz,5 Dennis P. Lettenmaier,6 Ronald J. Stouffer7

Systems for management of water throughout the developed world have been designed and operated under the assumption of stationarity. Stationarity—the idea that natural systems fluctuate within an unchanging envelope of variability—is a foundational concept that permeates training and practice in water-resource engineering. It implies that any variable (e.g., annual streamflow or annual flood peak) has a time-invariant (or 1-year-periodic) probability density function (pdf), whose properties can be estimated from the instrument record. Under stationarity, pdf estimation errors are acknowledged, but have been assumed to be reducible by additional observations, more efficient estimators, or regional or paleohydrologic data. The pdfs, in turn, are used to evaluate and manage risks to water supplies, water-
The MEV distribution

- Assuming Weibull as a pdf for daily rainfall
- Fit performed using Probability Weighted Moments (Greenwood et al, 1979)

1. Sampling n from the distribution $p(n|C,w)$
2. Fit Weibull to the single years C_i, w_i

$F(x) = 1 - e^{\left(\frac{x}{c}\right)^w}$
The Metastatistical Extreme Value Distribution

\[
\zeta(x) = \sum_{n=1}^{\infty} \int \int g(n, C, w) \left[1 - e^{\left(\frac{x}{C} \right)^w} \right]^n dC dw
\]

- Weibull parameters \(\vec{\theta} = [C, w] \) and \(N \) are random variables themselves.
- The CDF of annual maximum is the mean on all their possible realizations.
An alternative approach consists in simplifying the MEV expression (e.g. hypothesizing independence among N, C, w):

$$\zeta(x) = 1 - \sum_n n \cdot p(n) \cdot e^{\left(\frac{x}{C}\right)^w}$$

Instead of an analytical model for $g(n, C, w)$, we use the observed frequencies.

Monte Carlo integration:

$$\int p(x)f(x) \approx \sum_i f(x_i) \text{ if } x_i \sim p(x)$$

Penultimate Approximation
What to do next?

Nonstationary EV analysis: Dependence of the parameters {N,C,w} on climatological parameters (downscaling)

[Marani and Zanetti, 2014]

[Serinaldi and Kilsby, 2015]
Non stationary analysis

Bologna (Italy) randomly reshuffled time series
Sliding and overlapping windows analysis

GEV and POT estimated quantiles show oscillations with same amplitude

Due to the variance in the parameter estimates

In the case of MEV the variance of estimated quantiles is much smaller; Stationary behaviour
Ratio of MEV estimation error to GEV-POT error

Sample size [Years]

Return Time [Years]

\(\frac{\rho_{MEV}}{\rho_{POT}} \)
Estimation error as a function of $\text{Tr}/(\text{sample size})$
Performance when testing sample = calibration sample
Error distribution

Distribution of the error computed over 1000 random reshuffling, for all the analyzed datasets.
Quantiles (Tr=100 yrs) estimated by **GEV, POT, MEV** calibrated over 30-years samples

\[\epsilon = \frac{\hat{x} - x_{obs}}{x_{obs}} \]

\[\hat{x} = F^{-1}\left(1 - \frac{1}{Tr_i}\right) \]

\[x_{obs} \] from the observational (independent) sample
Global QQ-Plots

Sample size=45 years 100 random reshuffling
Some thoughts on non stationarity

Bologna (Italy) original 180 years time-series
Sliding and overlapping windows analysis

GEV and POT estimated quantile shows higher variance

MEV shows a positive trend in est. quantiles

Due to trend in the parameters of Weibull C, w and n
A case study over Oklahoma

[Elliot et al., 1993]

Zorzetto and Marani, WRR, 2018
Parameters of rainfall pdf downscaled using closed-form relations from space-time stochastic rainfall models (Marani, 2003)
Fig. 1 US Billion-dollar Weather and Climate Disaster time series from 1980-2011 indicates the number of annual events exceeding $1 billion in direct damages, at the time of the event and also adjusted to 2011 dollars using the Consumer Price Index (CPI)