

Big data and drought risk

High-level Panel Debate – UNESCO WWAP Colombella, 22/11/2018

Francesca Todisco University of Perugia

PERUGIA (Italy), NOVEMBER 22nd 2018 - UNESCO WWAP headquarter Colombella

Outlines

- Drought risk
- big data in hazard assessment
- big data in hazard trends assessment
- big data in vulnerability assessment/coping with drought

Introduction

There are several types of water crisis / drought:

-meteorological, defined on the basis of a rainfall deficit, in relation to a "normal" quantity or average calculated over a sufficiently long period (at least 30 years), and of the duration of the dry period;

- agricultural, when the water reserve in the part of the soil affected by the roots is insufficient to support the development of crops and pastures between a rainy event and the other;

- hydrological, caused by insufficient recharge of groundwater, water courses and surface basins and occurs with longer times than the other two;

- **socio-economic**, associated with the demand-supply ratio of goods associated with water.

Big data in hazard assessment

Big data in hazard assessment

PERUGIA (Italy), NOVEMBER 22nd 2018 - UNESCO WWAP headquarter Colombella

Terni Rgs

(b) 600₁

Rainfall (mm)

Cumulated rainfall in spring-summer period

500

400

300

200

100

1951 1961 1971 1981 1991 2001

6

Big data in hazard assessment and its trends

y = -1.64x + 340.6

(a)

Year

L. Vergni, F. Todisco / Agricultural and Forest Meteorology 151 (2011) 301-313

ial distribution of trends and tendencies: significant negative () and positive () and not significant negative () and positive () for the ! ndex: at a 6-month time scale for the months of March, SPI6₃, (a) and September, SPI6₉, (b); at a 4-month time scale for August SPI4₈, (c). Numbers cc rrends show the return period (RT), assumed over a 30-year period, by a drought event having a present RT= 10 years according to the trend slop

SPOLETO TERNI PERUGIA = 0.00 x + 27.30(c) 24 8 y = 0.016x + 20.55-0.014x + 13.0310-8. 1924 1939 1954 1969 1984 1999 1951 1961 1971 1981 1991 2001 1951 1961 1971 1981 1991 2001 Year Year Year minimum/mean/maximum temperature

AGRICULTURAL AND FOREST METEOROLOGY 148 (2008) 1-11

y = -1.33x + 372.3

Climatic changes in Central Italy and their potential effects

Year

corn water consumption

Spoleto_Rgs

(a) 600

Rainfall (mm)

500

400

300

200

100

1951 1961 1971 1981 1991 2001

Trends of the STANDARD PRECIPITATION INDEX, SPI6, October-March, March-September, March-August

Decreasing water availability

Increasing water requirements

Big data in hazard assessment and its trends

Theor Appl Climatol (2014) 115:41-52 DOI 10.1007/s00704-013-0876-2

ORIGINAL PAPER

Analysis of drought in the region of Abruzzo (Central Italy) by the Standardized Precipitation Index

Trends of the STANDARD PRECIPITATION INDEX

Big data in coping with drought (vulnerability)

Big data in coping with drought (vulnerability)

Big data in coping with drought (vulnerability)

Conclusions

- Big data and open data are important in Sustainable and Integrated Water Resources Management (SWRM), in assessing hazards and in mitigating vulnerabilities
- In my talk have only given some examples of big data application in SWRM
- Big data and open data are also important in assessing the exposition of an area to a hazard: who and what
- •Citizens' science can be a challenge for data collection, but we must pay attention to the quality of the data that derives from it

Contact info

- www.unipg.it
- francesca.todisco@unipg.it